
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Integrating Machine Learning techniques into GIS software:
Development of a comprehensive and versatile QGIS plugin for

cluster analysis on geospatial data

Relatore:
Prof. Letizia Tanca

Correlatori:
Dott. Emilia Lenzi
Dott. Carlo Andrea Biraghi

Tesi di Laurea Magistrale di:
Andrea Folini, 920286

Anno Accademico 2020-2021

Acknowledgements

Innanzitutto grazie alla professoressa Letizia Tanca per la possibilità di lavorare a
questo progetto, e per la professionalità dimostrata dall’inizio alla fine del lavoro.
Grazie, inoltre, ai dottori Emilia Lenzi e Carlo Biraghi per l’aiuto fondamentale
e l’immensa disponibilità, costanti per tutto il percorso di sviluppo, e senza i
quali il completamento di questo lavoro non sarebbe stato possibile. Un ulteriore
ringraziamento per avermi introdotto e guidato in questo appassionante, e per
me nuovo, ambito di ricerca.

Grazie a tutta la mia famiglia per il supporto e l’affetto, dimostrati giorno per
giorno, e per aver sempre creduto in me e nelle mie capacità. Soprattutto, un
ringraziamento speciale ai miei genitori, che nonostante le difficoltà non mi hanno
mai fatto mancare niente e hanno sempre assecondato le scelte personali, e sono
il principale motivo per cui sono arrivato in fondo a questo lungo percorso.

Grazie, infine, a tutti gli amici, da chi è presente dai tempi delle elementari e
con cui condivido con piacere la mia vita da ormai vent’anni, a chi ho conosciuto
in questi ultimi anni di università, sia compagni di studio che di appartamento,
con cui ho formato un legame altrettanto importante e profondo.

Come sapete, non mi è facile esprimere la mia gratitudine a parole, ma spero che
queste poche righe possano far trasparire almeno in parte l’immensa riconoscenza
per tutte le persone che mi sono vicine.

I

Abstract

As geospatial data continuously grows in complexity and size, the application
of Machine Learning and Data Mining techniques to geospatial analysis is
increasingly more essential to solve real world problems. Although, in the last
two decades, the research in this field produced innovative methodologies, they
are usually applied to specific situations and not automatized for general use.
Therefore, both generalization and integration of these methods with Geographic
Information Systems are necessary to support researchers and organizations in
data exploration, pattern recognition, and prediction in the various applications
of geospatial data. The lack of machine learning tools in GIS is especially
clear for what concerns unsupervised learning and clustering. In this work we
present a plugin, ready to be published, that we developed for the open-source
software QGIS and offers functionalities for the entire cluster analysis process:
from (i) pre-processing, to (ii) feature selection and clustering, and finally (iii)
cluster evaluation. Our tool provides different improvements from the current
solutions available in QGIS, but also in other widespread GIS. The expanded
features provided by the plugin allow the users to deal with some of the most
challenging problems of geospatial data, such as high dimensional space, poor
quality of data, and large size of data. Another important objective of the
research is the accessibility and ease of use of the plugin, since the general user
of GIS is often lacking a machine learning and computer science background.
To assess the strengths and weaknesses of the program, we will cover numerous
experiments with real world situations on data from the city of Milan. The
datasets for the experiments are of different nature (i.e., climatic, urban, and
socio-demographic) and different sizes, ranging from less than 100 data points
to almost 70000, and with a large number of numerical attributes, up to 109.
Overall, the experimental phase shows good and adequate flexibility of the plugin,
and outlines the possibilities for future developments that can be provided also
by the QGIS community, given the open-source nature of the project.

III

Sommario

Con la continua crescita delle dimensioni e della complessità dei dati geospaziali,
l’applicazione delle tecniche di Machine Learning e Data Mining all’analisi
spaziale sta acquisendo un ruolo sempre p̀ıù centrale nella risoluzione dei prob-
lemi reali. Nonostante, negli ultime due decenni, le ricerche in questo campo
abbiano sviluppato metodologie innovative, queste vengono solitamente applicate
a contesti specifici e non sono automatizzate per l’uso generale. Perciò, la gener-
alizzazione e l’integrazione di questi metodi con i sistemi informativi geografici
sono necessarie per sostenere i ricercatori e le organizzazioni nell’esplorazione
dei dati, il riconoscimento di pattern, e la predizione nelle varie applicazioni dei
dati geospaziali. La mancanza di strumenti per il machine learning nei GIS è
evidente soprattutto per quanto riguarda l’apprendimento non supervisionato e
il clustering. In questo lavoro presentiamo un plugin sviluppato per il software
open-source QGIS, che include funzionalità per l’intero processo di clustering:
dalla (i) pre-elaborazione, alla (ii) selezione delle caratteristiche e il clustering, e
infine la (iii) valutazione del clustering. Il nostro programma introduce diverse
innovazioni rispetto alle soluzioni presenti attualmente in QGIS e altri GIS molto
diffusi. Le funzioni aggiuntive del plugin permettono agli utenti di affrontare le
problematiche più comuni dei dati geospaziali, come l’alto numero di dimensioni,
la scarsa qualità, e la grandezza dei dati. Altri obiettivi rilevanti del nostro
lavoro sono l’accessibilità e la facilità di utilizzo, in quanto gli utenti dei GIS
spesso non hanno molte conoscenze informatiche e di machine learning. Per
valutare i punti di forza e di debolezza del programma, mostreremo numerosi
esperimenti con situazioni reali su dati della città di Milano. I dati utilizzati per
gli esperimenti sono di diversa natura (climatici, urbani e socio demografici) e di
diverse grandezze, passando da meno di 100 osservazioni a quasi 70000, e con un
ampio numero di attributi, fino a 109. Complessivamente, la fase sperimentale
mostra l’ottima flessibilità del plugin, e delinea le possibilità per gli sviluppi
futuri che possono essere apportati anche dalla comunità di QGIS, vista la natura
open-source del progetto.

V

Contents

Acknowledgements I

Abstract III

Sommario V

Contents VII

List of Figures XI

List of Tables XIII

List of Algorithms XV

List of Acronyms XVII

1 Introduction 1

2 State of the art and goals 3
2.1 Analysis of geospatial data . 3
2.2 IMM and SIMBA . 4

2.2.1 IMM . 4
2.2.2 SIMBA methodology . 6

2.3 Clustering tools in ArcGIS and QGIS 7
2.3.1 ArcGIS tools . 8
2.3.2 QGIS tools . 10

2.4 Motivation and goals . 11

3 Theoretical background 13
3.1 Geographical Information System 13

3.1.1 GIS data . 13
3.1.2 QGIS plugins . 14

3.2 Machine learning . 15
3.3 Clustering algorithms . 16

3.3.1 Agglomerative hierarchical clustering 17

VII

3.3.2 K-Means . 19
3.3.3 K-Means vs Agglomerative hierarchical 21

3.4 Additional machine learning concepts 21
3.4.1 Distance measure . 21
3.4.2 Data scaling . 22
3.4.3 Clustering evaluation . 23
3.4.4 Number of clusters . 24

3.5 Feature selection . 26
3.5.1 Feature selection for clustering 27
3.5.2 Clustering in high dimensionality 27

4 Datasets description 29
4.1 Climate data . 29
4.2 Urban data . 31
4.3 Demographic and social data . 34
4.4 Building data . 34

5 Plugin implementation 35
5.1 Implementation overview . 35
5.2 Feature cleaning implementation 39

5.2.1 Highly correlated features 39
5.2.2 Constant features . 40
5.2.3 Quasi constant features 40
5.2.4 Creation of new layer . 41

5.3 Clustering implementation . 41
5.3.1 Feature selection . 41
5.3.2 Clustering algorithms . 43
5.3.3 Graphs . 44

5.4 Evaluation implementation . 44
5.4.1 Indexes and score . 44
5.4.2 Load and save experiments 46

5.5 Configuration file . 47
5.6 User Interface . 48

6 Experiments 53
6.1 Climate experiments . 54

6.1.1 100m resolution . 54
6.1.2 ACE climate . 55
6.1.3 NIL climate . 57
6.1.4 Block climate . 60

6.2 Urban experiments . 61
6.2.1 ACE urban . 61
6.2.2 NIL urban . 63
6.2.3 Block urban . 65

6.3 Building experiments . 66
6.4 Demographic and social experiments 66

VIII

6.4.1 Young people education and occupation 67
6.4.2 Housing overcrowding . 68
6.4.3 Population isolation . 70

7 Experiments evaluation 73
7.1 Climate results . 73

7.1.1 100m resolution . 73
7.1.2 ACE climate . 77
7.1.3 NIL climate . 78
7.1.4 Block climate . 79

7.2 Urban results . 80
7.2.1 ACE urban . 80
7.2.2 NIL urban . 80
7.2.3 Block urban . 81
7.2.4 Comments on urban results 81

7.3 Buildings results . 81
7.3.1 Automatic features . 82
7.3.2 Manual features . 82
7.3.3 Comparison between manual and automatic 83

7.4 Demographics and social results 84
7.4.1 Young people education and occupation 84
7.4.2 Housing overcrowding results 84
7.4.3 Population isolation results 85

8 Conclusions and future work 87

Bibliography 92

Appendices 93

A Cluster Analysis User Guide 95

IX

List of Figures

2.1 IMM phases . 5
2.2 SIMBA methodology flow . 7
2.3 ArcGIS Multivariate Clustering 9
2.4 Attribute Based Clustering plugin 10

3.1 Vector and raster data . 14
3.2 Hierarchical clustering dendrogram example 18
3.3 K-Means example iterations . 20
3.4 Euclidean vs manhattan distance 22
3.5 Example of number of clusters selection from dendrogram 25
3.6 Elbow method example . 25

4.1 Copernicus Toolbox application for climate data 30
4.2 Process flow of climate dataset creation 31
4.3 ACE map . 32
4.4 NIL map . 33
4.5 Block map . 33
4.6 Part of Building map . 34

5.1 Features cleaning sequence diagram 36
5.2 Clustering sequence diagram . 37
5.3 Experiments evaluation sequence diagram 38
5.4 Experiment file example . 47
5.5 Configuration json file . 48
5.6 Features cleaning section UI . 49
5.7 Clustering section UI . 50
5.8 Experiments evaluation section UI 51
5.9 Example of notification messages 51

6.1 ACE climate data dendrogram 55
6.2 ACE climate data BSS and WSS trends for hierarchical clustering 56
6.3 ACE climate data BSS and WSS trends for K-Means clustering . 57
6.4 NIL climate data dendrogram . 58
6.5 NIL climate data BSS and WSS trends for hierarchical clustering 58

XI

6.6 NIL climate data BSS and WSS trends for K-Means clustering . 59
6.7 Block climate data dendrogram 60
6.8 Block climate data BSS and WSS trends for K-Means clustering 61
6.9 ACE urban data dendrogram . 62
6.10 ACE urban data BSS and WSS trends for hierarchical clustering 62
6.11 ACE urban data BSS and WSS trends for K-Means clustering . . 63
6.12 NIL urban data dendrogram . 64
6.13 NIL urban data BSS and WSS trends for hierarchical clustering . 64
6.14 NIL urban data BSS and WSS trends for K-Means clustering . . 65
6.15 Block urban data BSS and WSS trends for K-Means clustering . 66
6.16 Young people data dendrogram 67
6.17 Young people data BSS and WSS trends for hierarchical clustering 68
6.18 Families data dendrogram . 69
6.19 Families data BSS and WSS trends for hierarchical clustering . . 69
6.20 Alone people data dendrogram 70
6.21 Alone people data BSS and WSS trends for hierarchical clustering 71

7.1 Map of monthly climate data from 2017 with 5 clusters 76
7.2 Local Climate Zones Milan . 76
7.3 Hierarchical clustering on ACE climate data with 2 and 5 clusters 77
7.4 K-Means clustering on ACE climate data with 6 clusters 78
7.5 Hierarchical and K-Means clustering on NIL climate data with 3

and 5 clusters . 78
7.6 K-Means clustering on Block climate data with 3 clusters 79
7.7 K-Means clustering on Building data and manually selected fea-

tures with 6 clusters . 83
7.8 Hierarchical clustering on young people education on occupation

data with 2 and 4 clusters . 84
7.9 Hierarchical clustering on overcrowding with 2 and 4 clusters . . 85
7.10 Hierarchical clustering on isolation with 2 and 3 clusters 85

XII

List of Tables

4.1 Climate variables description . 29

6.1 Monthly Variables from automatic selection for 2016 and 2017 . 55

7.1 Internal metrics for experiments on yearly data from 2008-2017 . 74
7.2 Internal metrics for experiments on yearly data from 2016 74
7.3 Internal metrics for experiments on yearly data from 2017 74
7.4 Internal metrics for experiments on monthly data from 2017 . . . 74
7.5 Internal metrics for experiments on monthly single climate vari-

ables from 2017 . 75
7.6 Internal metrics for experiments on ACE urban data 80
7.7 Score comparison between ACE climate and urban experiments . 80
7.8 Internal metrics for experiments on NIL urban data 80
7.9 Score comparison between NIL climate and urban experiments . 81
7.10 Internal metrics for experiments on NIL urban data 81
7.11 Internal metrics for experiments on buildings’ data and automati-

cally selected features . 82
7.12 Internal metrics for experiments on buildings’ data and manually

selected features . 82
7.13 Score comparison on building experiments between manual and

automatic feature selection . 83

XIII

List of Algorithms

1 Agglomerative hierarchical clustering 19
2 Standard K-Means . 20

3 Correlated features filter . 40
4 Entropy feature selection . 42
5 Random sampling Entropy feature selection 43
6 Comparison matrix computation 45
7 Score computation . 46

XV

List of Acronyms

ML Machine Learning

GIS Geographic Information System

SIMBA Systematic clusterIng-based methodology to support Built
environment Analysis

IMM Integrated Modification Methodology

CAS Complex Adaptive System

KC Key Categories

BED Built Environvment Decomposition

FLC First Level Clustering

SLC Second Level Clustering

CRS Coordinate Reference System

API Application Programming Interface

AI Artificial Intelligence

SSE Sum of Squared Errors

WSS Within clusters Sum of Squares

BSS Between clusters Sum of Squares

CDS Climate Data Source

NetCDF Network Common Data Form

ACE Area di Censimento

NIL Nucleo di Identità Locale

PGT Piano di Governo del Territorio

GUI Graphical User Interface

XVII

LCZ Local Climate Zones

XVIII

Chapter 1

Introduction

With the exponential growth of the use of computer science in the last decades,
the analysis of data and information is playing an increasingly critical role in
every aspect of society. A particular type of data which is of great interest
for a wide range of stakeholders, such as businesses or public organizations, is
geospatial data, which combines location information (usually coordinates on
earth), attribute information, and often temporal information. Geospatial data
can be used to solve a large variety of real-world problems, from studies on
customers to epidemiology, natural disasters, and urban planning. The software
systems to perform spatial analysis on this kind of data are called Geographic
Information Systems (GIS). GIS tools are essential to uncover meaning and
insight in geospatial data with the creation and visualization of maps, graphs,
and statistics. As geospatial data complexity, variety and volume increased over
the years, the analysis required more and more advanced methods. To overcome
these challenges, researchers started to apply the concepts of Machine Learning
to spatial analysis and GIS to filter, interpret and predict information [1]. An
example of this application is the recent introduction of the SIMBA system [2]
as a support of the Investigation phase of the IMM methodology [3]. IMM is
the acronym of Integrated Modification Methodology, an innovative design and
analysis methodology for the built environment whose main goal is improving
the energy performance of the cities. SIMBA is a clustering-based methodology
which supports and systematises the analysis of the built environment. The
methodology is divided in three different phases:

• Built Environment Decomposition;

• First Level Clustering;

• Second Level Clustering.

Although SIMBA provides a useful methodology to select a representative
and reasonable number of features and to measure the distance between elements
in the built environment analysis, it still lacks a certain degree of automation.
The automation and complete integration of this methodology within GIS tools

1

are the motivations from which this work starts. The approach that we took
to solve this problem consisted in the development of a plugin for QGIS [4], a
widespread open-source GIS software.

During the development phase, we noticed the possibility to create a more
general tool for cluster analysis that is suited for a wider range of use-cases than
SIMBA. By doing this, we also extended the QGIS functionalities, as solutions
of this kind are still underdeveloped in the most popular GIS. In particular,
the objective of the work is to provide a complete tool for cluster analysis on
geospatial data of different natures and different sizes. The final version of the
tool we developed is composed by three main parts:

• data pre-processing for dimensionality reduction;

• feature selection and clustering;

• evaluation of the obtained clustering.

Along with the implementation, the research is integrated with a considerable
experimental phase, both during and after the development phase. This phase
is essential to highlight both the potential of the plugin and its limitations in
real world scenarios. The great volume of experiments is conducted on data
about the city of Milan, describing social-demographics, urban and climatic
characteristics and with different granularities.

The structure of the thesis is the following:

• Chapter 2: provides a description of geospatial data analysis, SIMBA and
IMM methodologies and the state of the art of the current solutions for
clustering in GIS. Then we define the detailed goals and motivations of
the work;

• Chapter 3: introduces the fundamental theoretical concepts about GIS data
and plugins, machine learning and data mining relative to the functionalities
of our plugin;

• Chapter 4: describes the composition of the datasets used in the experi-
mental phase;

• Chapter 5: explains the details of the implementation of the plugin. Both
from a higher level point of view and the detailed functionalities of each
section.

• Chapter 6: provides a description of the settings of some of the experiments
carried out during and after development;

• Chapter 7: reports the results of the experiments and discusses about the
plugin’s functionalities for evaluation;

• Chapter 8: first, includes the conclusions of the work and comments about
the final version of the plugin. Then, provides some possibilities for future
developments and expansion of the features.

2

Chapter 2

State of the art and goals

In this chapter we will talk about the context and the state of the art for our
research work. Finally, we will give the motivation of the research and state the
goals that we set. Some theoretic concepts introduced here will be covered in
more detail in chapter 3.

2.1 Analysis of geospatial data

Geospatial analysis is a process of Geographical Information Systems data
interpretation, exploration, and modelling, from acquisition to understanding
results. The retrieved information is computer-processed with spatial analysis
software and varies depending on the number of tasks and their complexity.
The simplest one is visualization, while a more detailed approach suggests
comprehensive analytics with specific tools to elaborate actionable insights.
Typically, spatial analysis consists of five key stages: understanding your goal,
preparing data, choosing suitable tools and techniques, performing the research,
and estimating results [5].

Location, in the form of spatial data, is a key point for visualizing the current
location, predicting events, and enhancing service delivery. Information about
location can integrate and strengthen the complex analysis of the distribution of
locations, events, and services. This provides many opportunities for improving
government services in terms of best governmental segments, interacting with
customers and optimizing processes. As cities get larger, spatial information
becomes like a key tool in efficient urban service delivery, public safety, and
overall resource management [6].

In the last years, one of the most interesting and popular fields of geospatial
analysis has been the integration of machine learning and data mining techniques
with spatial data. These algorithms have been applied to geoprocessing tools to
solve problems in three broad categories. With classification, you can use vector
machine algorithms to create land-cover classification layers [7, 8]. Another
example is clustering, which lets you process large quantities of input point data,

3

identify the meaningful clusters within them, and separate them from the sparse
noise [9]. Prediction algorithms, such as geographically weighted regression,
gives you the ability to model spatially varying relationships. These methods
work well in several areas, and their results are interpretable, but they need
experts to identify or feed in those factors (or features) that affect the outcome
that we’re trying to predict [10].

2.2 IMM and SIMBA

One of the areas of application of ML to spatial analysis is sustainability in
building environments. In this field, we can find the research that contains the
foundations for the functionalities and some of the experiments in our work. The
SIMBA methodology, recently introduced by Emilia Lenzi [2], is a procedure
created to support the analysis of built environments; in particular, it has been
used as a support tool to the IMM process. In the next pages, we will cover this
methodology and its structure, along with the basics of IMM.

2.2.1 IMM

IMM is the acronym of Integrated Modification Methodology [11], an innovative
design methodology based on a specific process with the main goal of improving
the energy performance of cities. In this methodology, the city is considered as
a dynamic Complex Adaptive System comprised of the synergic integration of a
number of elementary parts which, through their arrangement and the architec-
ture of their ligands, provide a certain physical and provisional arrangement of
the CAS. In IMM the emergence process of interaction between elementary parts
to form a synergy is named Key categories. Key categories are the products
of the synergy between elementary parts, a new organization that emerges not
simply as an additive result of the proprieties of the elementary parts. According
to this view, the city is not solely a mere aggregation of disconnected energy
consumers, and the total energy consumption of the city is different from the sum
of all of the buildings’ consumption. This considerable gap between the total
energy consumption of the city and the sum of all consumers is concealed from
the urban morphology and urban form of the city. The IMM investigates the
relationships between urban morphology energy consumption and environmental
performances by focusing mostly on the ‘Subsystems’ characterized by physical
characters and arrangements. The main object of this design process is to
address a more sustainable and better performing urban arrangement. IMM
methodology is based on a multi-stage process composed of four different but
fully integrated phases, as shown in figure 2.1.

4

Figure 2.1: IMM phases

In the first part, the Investigation phase, the actual state of the system is
dismantled into its Components (Volume, Void, Network, Type of Uses) and
reassembled into Key Categories (KC) in order to assess the system Determinants
(Compactness, Complexity and Connectivity) with the goal of achieving an
efficient urban form. Now we describe only the elements of IMM that are relative
to our experiments using the definitions provided by Carlo Biraghi in his work
”Multi-Scale Modelling Approach for Urban Optimization: Urban Compactness
Environmental Implications” [12]:

• Components: despite their heterogeneity, cities can be dismantled into four
components, whose unpredictable and continuous interaction over times
gave birth to contemporary urban areas. These components are Volume
(the built part), Void (empty spaces), Function (activities performed by
citizens) and Network (networks of different modalities) [13]. Components
are the least set of elements to be considered when dealing with urban
environment. People are agents whose behaviour is affected by the config-
uration and interaction of these components; with their lives, they affect
and reflect the performances of the city;

• Key Categories: we have already introduced Key Categories, mentioning
their representing role of the synergy between parts of the built environment.
More precisely, Key Categories used in IMM (up to now) are:

– Urban Porosity: the spatial relationship between urban built-ups and
voids;

– Proximity: the structural relationships driven by the distances be-
tween basic land-uses;

– Diversity: the structural relationship derived from the different ty-
pologies of land-uses;

5

– Accessibility: the mobility patterns driven by dynamic characteristics
of origins and destinations;

– Effectiveness: the static effect of urban characteristics on the func-
tioning order of mobility systems;

– Interface: the characteristics of the street network that influence
overall connectivity;

– Permeability: the relationship between the street network and spatial
component influencing overall connectivity.

• Metric: IMM aims at providing quantitative measures (metrics) that
can pinpoint significant features of the spatial organization of the urban
elements, in order to characterize the concept of Key Categories. Metrics
describe the properties of the sample area. It is possible to create almost
an infinite number of metrics even if many could result as redundant
because built on the same parameters. The ones we will use in the datasets
described in chapter 4 are related to porosity and permeability.

• Attributes: Attributes are data related to morphological characteristics of
the territory and are used to compute metrics. Attributes could be both
geometrical properties and additional information. More attributes can be
obtained by numerical or spatial operation on the existing ones.

2.2.2 SIMBA methodology

SIMBA is a systematic clustering-based methodology with the goal of supporting
and improving the Investigation phase of IMM, by understanding and analysing
urban environments and the relationships among their parts. The methodology,
shown in figure 2.2, is composed of three main phases:

1. BUILT ENVIRONMENT DECOMPOSITION (BED phase)

2. FIRST LEVEL CLUSTERING (FLC phase, one for each dataset)

3. SECOND LEVEL CLUSTERING (SLC phase)

The input is a built environment of any Dimension. In the first step of the
BED phase, the granularity at which the analysis is conducted must be chosen. In
other words, the samples that will be clustered are defined. After the granularity,
there is the definition of the Dimensions, which represent the different aspects to
analyse. They can be of any type and categories, e.g., performances, morphology
characteristics, demographic data and so on. Once the datasets with the wanted
characteristics are created, they can move to the FLC phase. In these part, after
a pre-processing step and a feature selection step, clustering is performed on each
dataset separately. The feature selection is a process where the attributes of the
data used for clustering are chosen. In SIMBA, this selection is usually done twice
for every dataset, once manually using a set of attributes selected by experts and
once with an automatic entropy-based procedure. After clustering with both

6

Figure 2.2: SIMBA methodology flow

the manual and automatic sets, the two results are compared and evaluated. In
the third and last phase, the SLC one, the evaluation of the obtained results
together with the IMM expert’s knowledge and needs are combined and used
to select which are the Dimensions, and thus, features, that will be used in the
Second Level Clustering. The outputs of the procedure are:

• clusters for each Dimension;

• distances between elements for each Dimension;

• clusters and distances calculated combining only the selected Dimensions,
using the features selected for each one of them in the FLC phase.

In our tool, we implemented most of the functionalities and settings used for
SIMBA, along with additional ones that better suit our goals, as explained in
detail in the following chapters.

2.3 Clustering tools in ArcGIS and QGIS

Here we will analyse the tools available for clustering in ESRI ArcGIS and QGIS
[4], which are, respectively, the most popular proprietary and open source GIS.
The tools fall into two categories, based on which type of attribute they use to
create clusters: spatial and attribute-based. The first category finds groups of
data points based solely on their spatial location, while in the second one uses
the values of one or more numerical attributes.

7

2.3.1 ArcGIS tools

In ArcGIS there are different tools for what concerns cluster analysis, in both
the spatial and attribute-based category. For the spatial category the choice is
Density-based Clustering. It finds clusters of data points within surrounding
noise based on their spatial distribution. The Density-based Clustering tool
works by detecting areas where points are concentrated and where they are
separated by areas that are empty or sparse. Points that are not part of a
cluster are labelled as noise. Optionally, the time of the points can be used to
find groups of points that cluster together in space and time. This tool uses
unsupervised machine learning clustering algorithms which automatically detect
patterns based purely on spatial location and the distance to a specified number
of neighbours.

Examples of the second type are the Find K-Means tool and the more com-
plete Multivariate Clustering [14], shown in figure 2.3. Multivariate Clustering
performs clustering on one or more selected attribute with the algorithm K-
Means or K-Medoids. It also includes a support functionality to give information
on the best number of clusters. After the analysis is complete, there are multiple
graphs available that can be used to better understand the formed clusters and
the performances of each attribute used.

Finally, there is the tool Spatially Constrained Multivariate Clustering that
combines the two previous categories allowing clustering with both attributes
and locations in the analysis.

8

Figure 2.3: ArcGIS Multivariate Clustering

9

2.3.2 QGIS tools

In QGIS, the tools to perform cluster analysis are more scarce, and provided with
plugins developed by users. In the attribute based category, the best solution
is Attribute Based Clustering [15], while for the spatial category Cluster Maps.
Attribute Based Clustering, shown in figure 2.4, allows the selection between two
different algorithms, K-Means and Hierarchical, and provides a good number of
parameter settings for both of them. Before the analysis, there is the possibility
to plot a graph that helps the user with the selection of the best number of
clusters.

Figure 2.4: Attribute Based Clustering plugin

10

2.4 Motivation and goals

While in ArcGIS there is a good choice for clustering analysis with tools providing
a large number of possibilities beyond the mere application of a clustering algo-
rithm, in QGIS the available solutions present only few additional functionalities
from the basic ones. For this reason, the main goal of our work is to develop a
one-stop tool for QGIS that is capable to provide support for the whole process
of cluster analysis, from the pre-processing of data and feature selection, to the
evaluation of the results. Moreover, our research aims to allow the use of the
system in a wide range of use cases. This variety refers both to the field of
application, for example from social-economic analysis to climate and urban
studies, but also to the scale of the data, with efforts to optimize the execution
times and implement scalable alternatives for each functionality. One of the
main challenges of geospatial analysis is that the data often contains a multitude
of different attributes, placing the problem in a high dimensional space that
could reduce the performances of the analysis, as explained in section 3.5.2. Due
to this, we paid particular attention to the pre-processing and feature selection
parts, which are essential to reduce the dimensionality of the dataset. These
functionalities are lacking in the tools in ArcGIS, and completely overlooked in
the ones available for QGIS. Lastly, our final focus is the usability of the tool.
Since the users of QGIS are often not familiar with advanced machine learning
techniques, the interface and structure of the developed system should be as
intuitive and self explanatory as possible.

11

Chapter 3

Theoretical background

In this chapter we explain the theoretical concept about machine learning and
data mining techniques and GIS software that are necessary to understand our
work.

3.1 Geographical Information System

A Geographic Information System (GIS) is a system designed to capture, store,
manipulate, analyze, manage, and present all types of geographical data. The
key word to this technology is Geography, this means that some portion of the
data is spatial. In other words, data that is in some way referenced to locations
on the earth [16]. There are different options for GIS software to use, both
proprietary, like ArcGIS, and open source, as QGIS. The choice for our work is
QGIS, mainly for its open nature and support for plugin developers.

3.1.1 GIS data

GIS data can be separated into two categories: spatially referenced data which is
represented by vector and raster forms (including imagery) and attribute tables
which are represented in tabular format. Within the spatially referenced data
group, the GIS data can be further classified into two different types: vector and
raster [17].

A spatial reference is the georeferencing and coordinate system (CRS) assigned
to any geographic data. The spatial reference defines how geographic data is
mathematically transformed onto a flat map with the least amount of distortion.
There will always be some sort of distortion in geographic data since it is
the projection of three-dimensional data onto a two-dimensional plane. When
choosing a spatial reference, it is necessary to choose which type of distortion
you want to minimize [18]. When working on different layers it is essential that
they are in the same CRS to avoid any error.

13

Vectors are composed of geometries created by connecting one or more vertex
with paths and can be categorized based on their geometry type:

• points

• lines

• polygons

Points have zero dimensions and are stored as couples of coordinates indicating
a physical location. They are often used for objects that are too small to be
represented by a polygon, like a city at a global scale. Lines are one-dimensional
and connect two or more vertices in a path, so they can only be used to calculate
length. They usually represent rivers, trails, and roads on maps. Polygons are
two dimensional areas and are created connecting three or more vertices in a
closed path. With vector data we can use attribute tables where the values of
every line are linked to a single geometry.

Raster data is any pixelated (or gridded) data where each pixel is associated
with a specific geographical location. The value of a pixel can be continuous (e.g.,
elevation) or categorical (e.g., land use). If this sounds familiar, it is because
this data structure is very common: it’s how we represent any digital image. A
geospatial raster is only different from a digital photo in that it is accompanied
by spatial information that connects the data to a particular location. This
includes the raster’s extent and cell size, the number of rows and columns, and
its coordinate reference system [19]. In a raster, every pixel corresponds to a
square on Earth’s surface and the side length of it is called spatial resolution.
Raster layers can be converted into vector layers using the pixels as points or
polygons.

Figure 3.1: Vector and raster data

3.1.2 QGIS plugins

QGIS, as an open-source software, leaves the possibility to the user to implement
new functionalities through Python and C++ plugins. To support the develop-
ment of plugins, QGIS provides a python API [20] to access every functionality

14

and data available in the software through code. Moreover, it makes available
a series of guides and tools to help users in the creation, the update, and the
publication of plugins. Plugins can be categorized into two types, based on their
functionalities:

• regular plugins use a custom user interface and custom logic to process the
data, they are usually used when the developer needs more interactions
from the users than simple inputs;

• processing plugins are primarily for analysis and limit the user interaction
to select only inputs and outputs. They present the standard processing
interface from QGIS and have access to other useful functionalities, such
as batch processing and the possibility to be used from the python console.
Given these advantages, this should be the preferred option when developing
a plugin with no particular needs.

The plugin we implemented, presented in chapter 5, falls into the first category.
This choice is well justified since we had to combine in a single software a variety
of functionalities that would have required multiple processing plugins.

In QGIS a row of a data table is called a feature, while in machine learning
that name is used to indicate columns. To avoid confusion in the following
sections, the term “feature” will only be used for columns. To refer to a row, we
will use other common terms like data point or sample.

3.2 Machine learning

Machine learning (ML) is a subset of artificial intelligence (AI) that provides
systems the ability to automatically learn and improve from experience without
being explicitly programmed. Machine learning focuses on the development of
computer programs that can access data and use it to learn for themselves. The
process of learning begins with observations or data, such as examples, direct
experience, or instruction, in order to look for patterns in data and make better
decisions in the future based on the examples that we provide. The primary aim
is to allow the computers to learn automatically without human intervention or
assistance and adjust actions accordingly [21].

Machine learning algorithms can be divided into four main categories based
on how they learn, and the data used for training:

• supervised learning algorithms start from a known training dataset with
labelled data and produce an inferred function used to make predictions
on unseen data. In an optimal scenario, the function is able to assign to
every new data point a correct output value. The algorithm can evaluate
the accuracy of the prediction with a defined loss function, and improve
the model in the case that the results are not precise as expected. Widely
used algorithms in this category are linear regression and support vector
machines.

15

• unsupervised learning algorithms take as input data that is not labelled or
classified. The goal of this models is to find hidden structures or patterns of
the data points, without a right or wrong output. This freedom in learning
an output can bring obvious disadvantages in relation to supervised learning
since it is more difficult to evaluate the performance of the system and its
accuracy. On the other hand, the workload to prepare the input dataset
is minimal, since it does not require labels. One of the most common
unsupervised learning operations is clustering, which aims to separate
similar data points in non-specified groups.

• Semi-supervised learning algorithms are a combination of the two previous
categories, since they use for training both labelled and unlabelled data.
Usually, there is a vast majority of the latter and a small amount of the
former that can produce a considerable improvement on the accuracy
of the learner. This type of system can be particularly useful when the
labelling of data is difficult or time consuming, while unlabelled data is
easily accessible.

• reinforcement learning algorithms are methods that interact with their
environment by producing actions and discover errors or rewards. Trial
and error search and delayed reward are the most relevant characteristics of
reinforcement learning. This method allows machines and software agents
to automatically determine the ideal behaviour within a specific context in
order to maximize its performance. Simple reward feedback is required for
the agent to learn which action is best, this is known as the reinforcement
signal [21].

After giving an introduction on the different paradigms of machine learning,
we will now mostly consider unsupervised learning and clustering in particular,
which is the main focus of our work.

3.3 Clustering algorithms

Clustering is an unsupervised machine learning task, where the main goal is to
partition objects into groups of similar objects (clusters) and to discover hidden
structures or patterns in the data. The objects are typically described as vectors
of features (also called attributes) and can be numerical (scalar) or categorical.
The assignment can be hard, where each object belongs to one cluster, or fuzzy,
where an object can belong to several clusters with a probability. The clusters
can be overlapping, though typically they are disjoint. Fundamental in the
clustering process is the use of a distance measure, a function that quantifies the
similarity of two objects [22].

The term clustering does not correspond to a specific procedure, but to a
general problem that can be solved by using various algorithms. The algorithms
can be categorized based on their cluster model:

16

• Connectivity-based clustering: these models are based on the idea that
objects are more similar to close objects rather than far ones. Therefore,
the clusters are formed by connecting data points based on their distance,
defined using a defined distance function. These algorithms can follow either
a bottom-up or a top-down approach. The first case, called agglomerative,
starts with each data point in its own clusters and iteratively aggregates
the closest pair of clusters. The top-down or divisive approach starts from
a single cluster containing all objects and splits one cluster every step. At
the end of both processes, the output is not a simple portioning of the
dataset, but the extensive hierarchy of points joining at different distances,
hence the name hierarchical that can be used for these algorithms.

• Centroid-based clustering: the clusters in this case are represented by a
central vector, not necessarily part of the dataset, called centroid. These
are iterative algorithms in which the notion of similarity is not derived
by the distance between data points, but the distance to the centroids.
The number of clusters required is specified beforehand, and the process
becomes an optimization problem. Since the optimization problem is
NP-hard the common approach is to search for approximate solutions. A
widespread algorithm of this family is K-Means.

• Distribution Models: These clustering models are based on the notion
of how probable is it that all data points in the cluster belong to the
same distribution (For example: Normal, Gaussian). These models often
suffer from overfitting. A popular example of these models is Expectation-
maximization algorithm which uses multivariate normal distributions [23].

• Density models: These models search the data space for areas of varied
density of data points in the data space. It isolates various density regions
and assigns the data points within these regions in the same cluster.
Popular examples of density models are DBSCAN and OPTICS [23].

After the brief overview of the different algorithms to perform cluster analysis,
we can now focus on the ones we used during our work: Agglomerative hierarchical
and K-Means.

3.3.1 Agglomerative hierarchical clustering

As we introduced before, agglomerative hierarchical clustering starts by sepa-
rating every data point in its own cluster. Then the two closest clusters get
merged together and this step is repeated until only one cluster is left. The
result of this procedure is a hierarchy of the clusters showing at which distance
they are merged; this graph can be displayed graphically using a dendrogram.
In algorithm 1 we show the pseudocode of hierarchical clustering and in figure
3.2 an example of a dendrogram.

On the vertical axis there is the distance while on the horizontal one there
are 20 clusters of one data point. Samples 16 and 19 are at a distance of about

17

Figure 3.2: Hierarchical clustering dendrogram example

0.4 as we can see on the graph, and are the first two to be merged forming a new
cluster. Going from top to bottom we can see the order in which every group is
created. The dendrogram can be used to select the best number of clusters, as
explained in section 3.4.4.

18

Algorithm 1: Agglomerative hierarchical clustering

Input: Data Points X = {x1, . . . , xn} ⊆ Rd, number of clusters k,
distance function δ

Output: Clusters C
C = {Ci = {xi}|xi ∈ X}
D = {Di,j = δ(xi, xj)|xi, xj ∈ X}
while |C| > k do

Find closest pair of cluster Ci, Cj ∈ C
Cij = Ci ∪ Cj

C = C/{Ci, Cj} ∪ Cij

Update D to reflect the distance between Cij and existing clusters

end
return C

3.3.2 K-Means

K-Means is an iterative clustering algorithm that aims to find a local maxima in
each iteration. First, we need to specify the parameter k, representing the number
of clusters required, and assign every data point randomly to a cluster. Then,
the algorithm computes the centre (centroid) for every cluster. The next step is
to calculate the distance of data points to the centroids and reassign every object
to the closest cluster. Finally, it recomputes the cluster centroids and repeats
the last two steps until convergence, meaning that the data points assignments
no longer change. The standard version of K-Means uses random initialization
for the first partition of the objects, but there are also other methods to choose
the initialization that will yield different results. A technique commonly used to
address the problems of a poor random initialization, is to repeat the process
multiple times and select the partitioning with the best sum of squared error
(SSE). The error of each data point is defined as its distance to the closest
centroid.

In algorithm 2 we show the pseudocode for the standard version and in figure
3.3 some iterations of a K-Means example [24] with few points.

19

Algorithm 2: Standard K-Means

Input: Data Points X = {x1, . . . , xn} ⊆ Rd, number of clusters k
Output: A set of k Centroids: C = {c1, . . . , cn} ⊆ Rd

Initialize C = {c1, . . . , cn} ⊆ Rd at random
while C has not converged do

Si = 0, ∀i ∈ [k]
foreach x ∈ X do

j∗ = argminj ||xi − cj ||
Sj∗ ← Sj∗ ∪ {xj}

end

cj ← 1
Sj

∑
x∪Sj

x, ∀j ∈ [k]

end
return C

Figure 3.3: K-Means example iterations

20

3.3.3 K-Means vs Agglomerative hierarchical

Of course, there is not a definite answer on which of the two presented algorithms
is the best, as they have different advantages and disadvantages, and the decision
of the preferred algorithm is based on the specific application that we are
considering.

The first factor we consider is the computational complexity and the scaling
on larger datasets. The space requirements for K-Means are modest because
only the data points and centroids are stored. Specifically, the storage required is
O((m+K)n), where m is the number of points and n is the number of features.
The time requirements are also modest, basically linear in the number of data
points. In particular, the time complexity is O(I ∗K ∗m ∗ n), where I is the
number of iterations before convergence. Since I is often small and can be safely
bounded, as most changes typically occur in the first few iterations, we can state
the algorithm is linear in m, as long as the number of clusters K is significantly
less than m [25]. Agglomerative Hierarchical clustering presents instead worse
complexities for both time and space. It requires the storage of a similarity
matrix for all pairs of m data points, for a total space complexity of O(m2).
The time complexity, after performing some optimizations, is O(m2 ∗ logm) [25].
Therefore, K-Means is clearly the best solution to handle big datasets.

However, obvious disadvantages of K-Means are the necessity to select the
number of clusters a-priori and the random nature of the algorithm, which may
produce different solutions in different runs. The hierarchical algorithm is not
affected by these problems, since it provides the hierarchy of all the clusters and
is deterministic, meaning it always provides the same solution.

The last factor we consider is the shape of the clusters in the two approaches.
Hierarchical clustering can work well on data of any distribution, since the
concept of cluster boundaries is not defined. While K-Means works better when
the shape of the clusters is hyper spherical.

3.4 Additional machine learning concepts

In this section we cover some additional topics of machine learning that are
important for our work, such as distance measures, the scaling of data, the
problem of the number of clusters, and the evaluation of clustering.

3.4.1 Distance measure

Clustering is based on the concept of similarity of data points, which measures
how much two objects are similar. Similarity is usually defined as a distance
in the space, where the dimensions represent the features of the dataset. The
distance can be computed in different ways, where widely used formulas are:

• Euclidean distance;

• Manhattan distance;

21

• Cosine similarity;

• Hamming distance, used for binary vectors.

Only the first two are explained, since they are the ones allowed in our plugin.
Euclidean distance is the most common approach and is the length of the

direct segment connecting two points. It is defined as:

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2

The Manhattan distance is the sum of the lengths of the projections of the line
segment between the points onto the coordinate axes, and is described by the
formula:

d(x, y) =

n∑
k=1

|xk − yk|

Figure 3.4: Euclidean vs manhattan distance

The choice of the distance measure is important in the cluster analysis, since
it affects the final result. In hierarchical clustering it is possible to select the
preferred distance, while in the standard version of K-Means it is mandatory
to use Euclidean distance. In hierarchical clustering it is necessary to define
the distance between clusters as well. Common measures used are complete,
single, and average. The first two use respectively the maximum and minimum
distances among all data points in the two clusters. Average computes the
average of the distances of each object in the two clusters.

3.4.2 Data scaling

In a dataset it is common to have features that represent measures with different
units or different scales. When performing an analysis on data that is based on
distance, such as clustering, it is essential to take into account these differences.
A good approach to handle this problem is to scale the data to bring every
dimension to the same equal weight. Two possible transformations to apply are:

22

• Normalization (or Min-Max normalization): rescales the range of every
feature to [0, 1] using the formula:

x′ =
x−min(x)

max(x)−min(x)

• Standardization (or Z score normalization): brings the mean of each feature
to 0 and the standard deviation to 1, defined as:

z =
x− µ

σ

The decision to scale data and how to do it heavily depends on the features and
the algorithms used. For this reason, before applying any transformation, it is
necessary to have some information about the data and the process.

3.4.3 Clustering evaluation

Validating the performance of cluster analysis is not as trivial as counting the
number of errors or the precision and recall like in the case of supervised learning
algorithms. To evaluate a clustering experiment, we usually try to compute a
metric describing how well the similar points are grouped together or, when
possible, compare its performance to a gold standard. The first approach is
called internal evaluation, while the second one is external evaluation.

For internal evaluation, there are different metrics to measure intra-cluster
similarity (samples within a cluster are similar) and inter-cluster similarity
(samples from different clusters are dissimilar). Two of the most common metrics
are:

• Silhoutte coefficient
The Silhouette Coefficient is defined for each data point and is composed
of two scores: the mean distance between a data point and all other points
in the same cluster, and the mean distance between a sample and all other
points in the next nearest cluster. The Silhouette Coefficient for a set of
samples is given as the mean of the Silhouette Coefficient for each sample.
The score is bounded between -1 for incorrect clustering and +1 for highly
dense clustering. Scores around zero indicate overlapping clusters. The
score is higher when clusters are dense and well separated, which relates
to a standard concept of a cluster [26]. Silhouette for a single data point
and for a set of data are defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i)
S =

1

n

n∑
i=1

s(i)

where a is the average distance between a data point i and all the other
ones in the cluster to which i belongs, and b is the minimum average
distance from i to all clusters to which it does not belong.

23

• Davies Bouldin index
The Davies-Bouldin index is another internal evaluation metric, where the
validation of how well the clustering has been done is made using quantities
and features inherent to the dataset. The index directly evaluates intra-
cluster similarity and inter-cluster differences and is defined as a ratio of
these two measures. The score can only be positive with a minimum of 0,
with lower values indicating better clustering. The formula to calculate
the Davis-Bouldin index is:

DB =
1

n

n∑
i=1

max
j=1

(
δi + δj
d(ci, cj)

)

where n is the number of clusters, cx the centroid of cluster x, δx the
average distance of all elements in cluster x to centroid cx, and d(ci, cj) is
the distance between centroids ci and cj .

In external evaluation, the clustering results are compared to a benchmark
or gold standard, which is a labelling of the data points produced by an expert
of the field. The external metrics evaluate how well the clustering matches the
gold standard classes. The comparison matrix introduced in SIMBA that we
implemented in our plugin can be seen as a metric in this category. In that case,
the benchmark labels are not directly assigned to the data points, but are found
with clustering using a set of features selected by a human expert.

3.4.4 Number of clusters

Another challenging task in clustering, related to the evaluation, is the decision
of the optimal number of clusters. A simple approach could use an evaluation
metric on different cluster numbers and select the one with the best result. Here
we will focus on two graphical methods that we implemented in our system and
can provide useful insight: the dendrogram and the elbow method.

The dendrogram, as already anticipated before, can be used as a tool for this
decision. The best choice for the number of clusters is the number of vertical lines
in the dendrogram cut by a horizontal line that can transverse the maximum
distance vertically without intersecting a cluster. In figure 3.5 the maximum
distance is represented by the segment AB, and the choice is 4 clusters.

The other method, called knee-elbow analysis, is based on a graph with
the trends of the Within clusters sum of squares (WSS) and Between clusters
Sum of Squares (BSS). These two measures represent, respectively, how closely
related are objects in clusters and how well separated are different clusters. The
technique consists in looking for a knee or an elbow in the trends, showing a
significant modification in the metrics. In the example in figure 3.6, a good
choice would be 5 clusters, as shown by the sudden flattening of the two trends.

24

Figure 3.5: Example of number of clusters selection from dendrogram

Figure 3.6: Elbow method example

25

3.5 Feature selection

One of the most important steps of machine learning, especially with high-
dimensional problems, is feature selection, which consists in the selection of the
optimal subset of features that will be used in the model. This process will
determine the quality and the performance of the produced system. Indeed,
having fewer features than required will produce a model that is too simple
and not capable to predict the right output or to find the best patterns in the
data; on the other hand, selecting too many features may lead to overfitting and
excessive increase of the model complexity.

Feature selection is closely related to a common problem in machine learning
first introduced by Bellman [27] as the “curse of dimensionality”. This concept
refers to the explosive nature of spatial dimensions and its resulting effects, such
as an exponential increase in computational effort, large waste of space, and poor
visualization capabilities. A higher number of dimensions theoretically allows
more information to be stored, but practically rarely helps due to the higher
possibility of noise and redundancy in real world data [28].

To mitigate these problems, there are different feature selection algorithms
that can identify and remove irrelevant and redundant dimensions. They can be
separated into three main categories:

• wrappers require some method to search the space of all possible subsets
of features, assessing their quality by learning and evaluating a classifier
with that feature subset. The feature selection process is based on a
specific machine learning algorithm that we are trying to fit on a given
dataset. It follows a greedy search approach by evaluating all the possible
combinations of features against the evaluation criterion. The wrapper
methods usually result in better predictive accuracy than filter methods,
at the cost of high computational complexity [29].

• filter methods, unlike wrappers, are independent of any machine learning
algorithm, and base their selection on a rank of the features. The rank
is computed using intrinsic properties of the features and is usually fast
to calculate. For these reasons, they are less computationally expensive
than wrappers, but with lower prediction performance. After obtaining the
rank, the best number of dimensions can be found with cross-validation or
other techniques.

• embedded methods perform the selection as part of the model construction
process. An example of this category is Lasso Regression, which assigns a
penalty to all dimensions, shrinking a lot of them to zero. At the end of the
procedure, only the features with a coefficient greater than zero are used
for the model. In terms of computational complexity, these algorithms
tend to place between the previous two approaches.

26

3.5.1 Feature selection for clustering

Feature selection for unsupervised learning is usually more challenging than
when dealing with supervised learning, since, as already explained, it is difficult
to evaluate the performances of the model without a proper label on data; this
causes classic algorithms to not work on clustering. Moreover, in the literature
there are few attempts to overcome these problems. Some examples are the
wrapper framework for unsupervised learning proposed by Dy and Brodley [30]
or the ranking algorithm from Dash and Liu [31] explained in section 5.3.1.

A way to reduce the dimensionality of data before clustering, or before using
a feature selection algorithm, is to drop the features that we know are most
likely irrelevant or redundant, such as features with a really small variability or
that are highly correlated with other ones.

3.5.2 Clustering in high dimensionality

For clustering purposes, the most relevant aspect of the curse of dimensionality
concerns the effect of increasing dimensionality on distance or similarity. As
we saw before, most clustering techniques depend critically on the measure of
distance or similarity, and require that the objects within clusters are, in general,
closer to each other than to objects in other clusters [32]. Unfortunately, when
dealing with spaces in a lot of dimensions, the data points and their distance
measure does not behave as intuitively expected. In [33] is shown that, under
certain reasonable assumptions on the data distribution, the ratio of the distances
of the nearest and farthest neighbours to a given target in high dimensional
space is almost 1 for a wide variety of data distributions and distance functions.
This is clearly a situation we want to avoid in clustering, since the definition of
close points becomes useless. The best distance metric to use when dealing with
high dimension is Manhattan, followed by Euclidean, as proven in the work by
Aggarwal et al. [34].

27

Chapter 4

Datasets description

To show the versatility of the developed tool we chose to perform analysis on
different types of datasets and with variable sizes. All the datasets refer to the
city of Milan and can be grouped in four different categories:

• climate data

• urban data

• demographic and social data

• buildings data

4.1 Climate data

All climate data is from the Climate Data Source from Copernicus [35] and is
accessed through the provided Toolbox using an application that we developed
for this purpose, shown in figure 4.1. The raw data consist of air temperature,
humidity, and wind maps with a spatial resolution of 100 metres and time
resolution of an hour, collected from 2008 to 2017. The information about the
variables we used is reported in table 4.1.

Variable name Unit Comment
Near surface air temperature K Reported at 2m
Near surface relative humidity 1 Reported at 2m

Near surface wind speed m/s Reported at 2m, only scalar component

Table 4.1: Climate variables description

The data is aggregated over every year and also over months for 2016 and
2017, using both maximum and mean. For every different variable, time frame,
and statistical operation, we produce a NetCDF file with the Toolbox. Since the
output file is in a raster format, we need to convert it with QGIS to a vector

29

Figure 4.1: Copernicus Toolbox application for climate data

type to use it in the plugin. After changing the CRS and the format, we can
join the different vector layers to obtain the datasets for the experiments:

• all variables aggregated by year with max and mean, data from 2008 to
2017, for a total of 60 features;

• all variables aggregated by month with max and mean, data from 2016,
for a total of 72 features;

• all variables aggregated by month with max and mean, data from 2017,
for a total of 72 features.

All these datasets are composed of 17877 data points with a squared polygon
as geometry, which corresponds to the surface of Milan with a 100 meters
resolution. In figure 4.2 we show the process flow of the climate datasets creation.

30

Figure 4.2: Process flow of climate dataset creation

4.2 Urban data

These are the datasets describing the city of Milan in terms of metrics and
attributes from IMM, characterized by three different granularities:

• ACE (Area di Censimento) is a partition of the city of Milan into 85 units
based on census areas;

• NIL (Nuclei di Identità Locale) are 88 units that can be defined as neigh-
bourhoods of Milan. They are introduced from PGT (Piano di Governo del
Territorio) as areas interconnected by infrastructures, services for mobility
and green areas. Compared to ACE, NIL have different shapes and also
include the big rural areas outside the urban part of the city;

• Block is the largest and heterogenous dataset of the three, composed by
4328 data points. Each of these geometries is a polygon delimited by
street areas (Area stradale, 010104 [36]), where the street area can include
different types of viability, e.g. pedestrian zones and tram lines. For this
reason, the sizes and compositions of the blocks vary greatly from the city
center to the rural areas in the outskirts.

For what concerns the features, in all three datasets we find Metrics and
Attributes that describe various characteristic of the territorial units. In NIL
and ACE there are 109 features while for Blocks only 99, since we removed the
ones that are not meaningful at this granularity.

Metrics are quantitative measures that can pinpoint significant features of the
spatial organization of the urban elements in order to characterize the concept of
KC. The ones available in our dataset are related to Permeability and Porosity
and represent the ratio between different built areas (Volume) and different
empty spaces (Void). Attributes are used to compute metrics and sometimes
correspond to them (as for Area and Perimeter). They are data related to the

31

morphological characteristic of the territory. Both Metrics and Attributes in our
dataset are related to:

• Buildings

• Courts

• Blocks

• Districts

Figure 4.3: ACE map

32

Figure 4.4: NIL map

Figure 4.5: Block map

33

4.3 Demographic and social data

The demographic and social dataset [37] is composed by 32 statistical indicators
calculated on the basis of the census in 2011, grouped into the 85 ACE described
previously. The indicators include data about different types, such as age
distribution, employment, and education, regarding both the entire population
or specific classes. Some example are the population density, young (15-29 years
old) people neither in employment nor in education, families with 5 or more
components.

4.4 Building data

Building dataset contains data about all the buildings inside the city. It is
composed by 66811 data points, each representing a building (Corpo edificato,
020181 [36]) composed by one or more volumetric units (Unità volumetrica,
020101 [36]), and 34 features that describe the characteristics and the structure
of the buildings in both 2D and 3D. In figure 4.6 there is a small portion of the
dataset.

Figure 4.6: Part of Building map

34

Chapter 5

Plugin implementation

In this chapter we discuss the implementation of the plugin developed for QGIS3
that allows attribute based cluster analysis on a vector file with any geometry
type. First, we show an overview of the implementation and then a more detailed
description of every part. The details about installation are available in the User
Guide in Appendix A.

5.1 Implementation overview

We developed the plugin in Python (version 3.7), and all the necessary files and
base code are created using Plugin Builder [38]. The GUI is designed with QT
Designer and additional QGIS custom widgets [39], in order to have automatic
updates of the interface after the user adds or removes layers to the project.

The plugin is composed of three main parts that will be discussed in the
following sections:

• Feature cleaning

• Clustering

• Evaluation

One of the major challenges during development has been allowing most
of the functionalities on large datasets as well, both from the point of view of
the number of samples and the number of dimensions. To achieve this, we also
implemented algorithm options with good time complexities, as in the case of
entropy with sampling and K-Means. Moreover, for all the data storage and
manipulation done in the system, we use the data structures and functions
provided by the libraries pandas [40, 41] and NumPy [42] to guarantee high
performance.

In figures 5.1, 5.2, and 5.3 we show high level sequence diagrams to illustrate
the interactions between the user, the plugin, and QGIS.

35

Figure 5.1: Features cleaning sequence diagram

36

Figure 5.2: Clustering sequence diagram

37

Figure 5.3: Experiments evaluation sequence diagram

38

5.2 Feature cleaning implementation

In the first section, we want to give options to reduce the dimensionality of the
dataset by dropping the features that are most likely bad for clustering. This
is important to achieve better results and faster execution time, avoiding the
problems of clustering in high dimensionality explained in section 3.5.2.

5.2.1 Highly correlated features

As already discussed before, it can be useful to remove features in the dataset
that present a high correlation, both positive and negative, since they provide
redundant information and can lead to overweight certain attributes. We give
the possibility to choose the threshold of correlation and the criterion used to
keep a feature among a multicollinear group:

• order of the attributes in the dataset;

• lower average correlation with all the other features;

• similarity of the feature distribution to the Normal distribution. To check
which feature is preferred we calculate the Shapiro-Wilk statistics and
select the one with a higher value;

• ratio between max interval of values and domain of the feature, where a
higher value indicating better coverage of the domain is preferred. To use
this criterion all the features must have the same domain specified by the
user.

In algorithm 3 we present the pseudocode of the procedure used to filter the
features that we want to keep.

First, we get the symmetric matrix containing the pairwise correlation between
every dimension, using the absolute values to account for both positive and
negative correlation. Then we store in an array a value for every feature based
on the selected criterion. Finally, we scan the upper section of the matrix and
for every group with correlation above the threshold we only keep the feature
with the best value, flagging the other ones for elimination. To prevent dropping
more features than required, it is important to skip iterations regarding already
flagged ones.

39

Algorithm 3: Correlated features filter

Input: Dataset matrix D, threshold t
Output: Filtered data matrix D
C = correlation(D) //get correlation matrix
Compute feature values
flagged features = []
for (i = 0) to (num of features− 1) do

if i ∈ flagged features then
Skip iteration

end
best feature = i
for (j = i+ 1) to (num of features− 1) do

if j ∈ flagged features then
Skip iteration

end
if Cij > t then

Write in best feature the one with higher feature value
Add the other to flagged features

end

end

end
D = D − {columns ∈ flagged features}
return D

5.2.2 Constant features

Constant features are the attributes in a dataset with the same value for all
the points. This type of feature does not provide any information in cluster
analysis and only increases the dimensionality causing worse time and clustering
performance. For these reasons, they should be removed from the data. Since
the values are constant, the variance of the feature is zero and we can use the
function VarianceThreshold() from Scikit-Learn [43] with a threshold of 0 to
select the fields we need to remove.

5.2.3 Quasi constant features

With quasi constant features, we mean features with a vast majority of constant
values and only a few outliers differentiating from them. As in the case of zero
variance feature, these ones usually carry no valuable information and, in the
worst case, can be detrimental for our analyses. In order to select which features
fall into this category, we prefer to avoid using a threshold on variance, which is
difficult to define in the general case. Instead, we use two different parameters,
introduced in the function NearZeroVar() from the Caret package developed for
R [44]:

40

• ratio between the two most frequent values

• number of unique values relative to the number of samples

To flag a feature, first the frequency of the most prevalent value over the second
most frequent value must be above the frequency threshold. Secondly, the
number of unique values divided by the total number of samples must also be
below the unique values threshold. The thresholds are set for default respectively
to 19 and 0.05 (5%).

5.2.4 Creation of new layer

After the filtering of the features is complete, we create a new layer and add it
to the QGIS layer section with the name ”original-layer-name mod”. In QGIS,
it is not possible to duplicate a layer without sharing the same data source, and
for this reason, we need to go through more steps. First, we create an empty
scratch vector layer with the same geometry type and CRS of the base one and
we copy the full dataset from the old to the new vector. Then, for every point in
the new vector layer, we assign the geometry of the corresponding point in the
old one. Now we can remove the features we previously flagged for elimination.

5.3 Clustering implementation

This section is used to perform clustering on the chosen vector layer. First of
all, the user needs to select the features to use in the process. It is possible to
select the features both manually and automatically. The automatic feature
selection is done using an entropy-based algorithm presented in two versions
with different computational complexities. All the experiments carried out are
stored as instances of the Experiment() class and can be seen in the Evaluation
section. The cluster labels are added to the vector layer as a new field with the
name selected by the user.

5.3.1 Feature selection

To perform the analysis the user must select the dimensions he wants to use. It
is possible to add them manually from a list, extracted from the layer’s dataset
considering only the numeric fields, or use the automatic procedure. The latter
is a methodology based on entropy feature selection for clustering presented by
Dash and Liu [31]. Before showing the implementation of the algorithm, we need
to introduce some theory on Entropy and its relation to feature ranking.

Consider each feature Fi as a random variable while fi as its value, from
entropy theory we know that entropy is:

E(F1, . . . , FM) = −
∑
f1

· · ·
∑
fM

p(f1, . . . , fM) log p(f1, . . . , fM)

41

where p(f1, . . . , fM) is the probability or density at the point (f1, . . . , fM). If the
probability is uniformly distributed, we are most uncertain about the outcome,
and entropy is maximum. This will happen when the data points are uniformly
distributed in the features space. On the other hand, when the data has well
formed clusters, the uncertainty is low and so also the entropy. As we do not have
a priori information about clusters, calculation of p(f1, . . . , fM) is not direct, but
we can use the following way to calculate entropy without any cluster information
[31].

Two points belonging to the same cluster or different clusters will contribute
to the total entropy less than if they were uniformly separated. Similarity Si1,i2

between two instances Xi1 and Xi2 is high if the instances are very close and low
if they are far away. Based on these two assumptions, from the work of Dash
and Liu, entropy Ei1,i2 will be low if Si1,i2 is either low or high and Ei1,i2 will
be high otherwise [31].

Since we need to work on numerical data, we only consider the formulas
defined using Euclidean distance. The definition of Similarity is given by Si1,i2 =
eα×Di1,i2 , where α is the parameter α = − ln 0.5

D̄
,with D̄ average distance among

data points, and distance D is calculated as Di1,i2 = [
M∑
k=1

(
xi1k−xi2k

maxk −mink
)2]1/2. The

interval in the kth dimension is normalized by dividing it by the maximum interval
(maxk −mink) before calculating the distance. For every couple of points Xi1 and
Xi2 , Entropy is calculated as E = −Si1,i2× logSi1,i2−(1−Si1,i2)× log(1−Si1,i2),
which assumes the maximum value of 1.0 for Si1,i2 = 0.5; and the minimum
value of 0.0 for Si1,i2 = 0 and Si1,i2 = 1. With the previous definitions, Dash
and Liu provide the formula for a dataset of N data point as:

E = −
N∑

i1=1

N∑
i2=1

(Si1,i2 × logSi1,i2 + (1− Si1,i2)× log(1− Si1,i2))

Using the algorithm introduced in 4, we can now rank every feature based on
their effect on Entropy. We remove each feature and compute E; if the removal
of a feature results in minimum E the feature is the least important, and vice
versa. To select the best subset of feature, we use the same approach used in

Algorithm 4: Entropy feature selection

Input: Features M
Output: Best features M
for (i = 0) to |M | do

Pi = CalcEnt(M/i)
end
base entropy = CalcEnt(M)
M = M/{Mk | Pk ≤ base entropy}
return M

the SIMBA methodology [2], which consists in keeping only the features that

42

once dropped produce an increment in Entropy, compared to the base Entropy
computed with all the features.

Despite the optimization done by exploiting the symmetry of the similarity
and distance matrixes, the algorithm still performed badly on large datasets; in
particular in the cases with thousands of data points, given the time complexity
of O(M ∗ N2). For this reason, we implemented the scalable version of the
algorithm presented in the same work.

The new method is based on random sampling to perform the original
algorithm on smaller datasets, and removes the complexity dependency on the
number of data points. This version leverages the fact that a reasonably small
random sample retains the original cluster structure in most cases [31, 45],
which is a necessary condition for good entropy performances. We perform the
new algorithm 35 times with samples of 100 points as default values. These
parameters allow us to keep the execution time in the range of a few minutes
regardless of the size of the datasets. After this procedure, we have a ranking of
the features and again we select the ones that produce an increment of Entropy.

Algorithm 5: Random sampling Entropy feature selection

Input: Features M , number of iterations iter
Output: Best features M
for (i = 1) to iter do

S = GetSample(M)
for (i = 0) to |M | do

Pi = Pi + CalcEnt(S/i)
end
base entropy = base entropy + CalcEnt(S)

end
M = M/{Mk | Pk ≤ base entropy}
return M

5.3.2 Clustering algorithms

The two alternative algorithms for clustering are the ones we presented in section
3.3:

• Agglomerative hierarchical;

• K-Means.

The possibility to use different clustering algorithms allows the users to select
the one that best suits their needs. Especially, as we said before when talking
about space and time complexity of both algorithms, the use of only hierarchical
clustering would limit the analysis to small datasets. For both algorithm we use
the functions implemented in scikit-learn. The parameters we need to define for
hierarchical are:

43

• n clusters: represents the number of clusters we want to obtain and needs
to be specified by the user;

• affinity: distance measure between the sample. We use the Euclidean
distance as default;

• linkage: distance measure to use between clusters. The algorithm merges
the pairs of clusters that minimize this criterion. The parameter is set to
“complete”, which means we use the maximum distance between clusters.

For K-Means we only need to specify the number of clusters selected by the
users and the other parameters are set to default values.

The choice to scale the dataset is left to the user and it can be selected
between standardization and normalization, using respectively the classes Stan-
dardScaler() and MinMaxScaler() from scikit-learn.

5.3.3 Graphs

To simplify the choice of the number of clusters, it is possible to plot in a
separate window two different graphs using matplotlib library [46]. The first one
is the dendrogram showing the tree of hierarchical clustering. The other one is a
WSS and BSS graph showing the trends of both values for a number of clusters
defaulted to 1 to 19.

5.4 Evaluation implementation

In this section, we show all the experiments carried out in the current session, with
a recap of the settings and performances of the experiments and the possibility
to save and load them.

5.4.1 Indexes and score

To evaluate the quality of the experiments we calculate two indexes and the
comparisons among experiments on the same dataset. The indexes are the
internal metrics Silhouette coefficient and Davis-Bouldin index, both computed
using the functions Silhouette Score() and davies bouldin score() from scikit-
learn.

To make a direct comparison among two or more experiments to see how
many samples have been grouped in the same way in all the selected experiments,
we compute the comparison matrix with the algorithm shown below. The
comparison can only be used on experiments performed on datasets with the
same number of data points. To avoid any mistake by the user, the plugin
already filters the experiments compatible with the selected one and reports
them in the score section.

Comparison matrix is a symmetric matrix of dimension M where M is the
number of points for the dataset. Taking as input a list of cluster results,

44

Algorithm 6: Comparison matrix computation

Input: cluster labels
Output: comparison matrix
num points = len(cluster labels.columns[0])
Initialize comparison matrix with 0
for (i = 0) to (num points− 1) do

for (j = i) to (num points− 1) do
foreach exp ∈ cluster labels do

if expi == expj then
comparison matrixij = comparison matrixij + 1
if i ̸= j then

comparison matrixji = comparison matrixji + 1
end

end

end

end

end
return comparison matrix

containing for every point the cluster id for each experiment, what the matrix
evaluate is how many times two points are grouped in the same cluster. For
each experiment, it checks if the two points have the same cluster id and, if
they do, it increments the cell corresponding to that couple of points. Using the
symmetric property of this matrix, we update two cells at a time except for the
diagonal, reducing by almost half the iterations needed. For each comparison
we have a matrix having values between zero and N, where N is the number of
experiments selected:

• 0 means two points are never grouped in the same cluster;

• 1 to N − 1 means two points are in the same cluster only in some experi-
ments;

• N means two points are always grouped together.

This means that positive cases are values 0 and N since they mean clustering
in the experiments has produced the same results for that couple. We then
compare different experiments using the variable score whose computation is
shown below.

Score counts how many times values 0 or N occur in the comparison matrix
and it normalizes this number with the number of points squared. This means
that the Score value has a range between 0 and 1, with higher values indicating
a higher similarity among the experiment clusters.

45

Algorithm 7: Score computation

Input: comparison matrix,max val
Output: Score s
num points = len(comparison matrix.columns[0])
foreach value ∈ comparison matrix do

if value == 0 OR value == max val then
s = s+ 1

end
s = s

num points2

end
return s

5.4.2 Load and save experiments

Every experiment completed in the current session can be stored in a text file
saved in the folder ”Experiments” inside the plugin directory. The structure of
the file is simple and contains all the information about the experiment:

• experiment name;

• number of clusters;

• clustering algorithm;

• Silhouette score;

• Davies-Bouldin index;

• list of features

• cluster labels

The experiments saved in previous sessions can be loaded in the plugin
and are shown in the evaluation section along with the other experiments. An
example of the file structure can be seen in image 5.4.

46

Figure 5.4: Experiment file example

5.5 Configuration file

The plugin is developed to be usable by a general user without an advanced
knowledge of machine learning and software programming. For this reason, we
decided to move some parameter settings in an external json file. The json file
called ”Configuration” is in the plugin directory and can be easily modified by
any text editor. When the plugin is started we load the file and use it to initialize
an instance of Configuration() class. The structure of the configuration file is
shown in image 5.5 and the meaning of every variable is described below:

• frequency cut: the threshold for the ratio of the most common value to the
second most common value, used in the quasi-constant feature elimination;

• unique cut: the threshold for the ratio of distinct values to the number of
total samples, used in the quasi-constant feature elimination;

• entropy iterations: the number of random samples used for the sampling
entropy algorithm;

• sample size: the number of points in every random sample for the sampling
entropy algorithm;

47

• graph max cluster: the max number of clusters used when plotting WSS
and BSS trends;

• distance: distance measure used in hierarchical clustering, the accepted
values are ‘euclidean’ or ‘manhattan’.

Figure 5.5: Configuration json file

5.6 User Interface

The user interface is enclosed in a single window containing a QTabWidget split
into three tabs, one for each main functionality of the plugin. The layout of the
three tabs is similar and is composed of the widgets for user inputs, a message
section, and a brief user guide. The message box is used to notify the user about
any error or the completion of the selected operations. In figures 5.6, 5.7, 5.8,
and 5.9 we show the interface windows and some examples of notifications from
the plugin.

48

Figure 5.6: Features cleaning section UI

49

Figure 5.7: Clustering section UI

50

Figure 5.8: Experiments evaluation section UI

Figure 5.9: Example of notification messages

51

Chapter 6

Experiments

In this chapter, we will describe some of the experiments we made on the datasets
from Chapter 4 and the settings of the plugin used. The main objective of these
experiments is not to evaluate the performance of a particular methodology or
algorithm, but rather to show the potential of the developed tool to analyse data
of different nature and, most important, of different sizes, up to several tens of
thousands of data points. Furthermore, the experiments are also essential to
identify and understand the shortcomings of the plugin. For these reasons, we
preferred to perform analysis on real and complete use cases. All the analyses
are performed with the help of experts in the field of geospatial data, and in
particular with a great knowledge of the city of Milan.

Since the datasets used are of different types and sizes, the parameters and
purposes vary a lot between the experiments. Some settings of the plugin are
common for all the experiments, in detail:

• feature correlation: the correlation threshold is set to 0.80 and the criterion
to keep features is average correlation;

• quasi constant feature: the thresholds are 19 for frequency and 0.05 for
unique values;

• sampling entropy: 35 iterations of the algorithm with samples of 100 points;

• distance measure: the measure for hierarchical clustering is Euclidean. We
repeated the experiments with Manhattan distance and the results were
similar or equal and they will not be reported here;

• data scaling: most of the features in the datasets have a different scale,
since we want to have all the features with the same weight we decided to
scale the data in every experiment. The choice is standardization instead
of normalization to not suppress the effect of outliers [47];

• K-Means graphs: given the random nature of K-Means, the WSS-BSS
graph produces different trends on each run. After trying multiple runs on

53

a variety of datasets and settings, we concluded that these differences are
negligible, and the graph shown for each experiment is selected without a
specific criterion.

6.1 Climate experiments

The first type of experiments carried out is on climate datasets. The goal for
this analysis was to create a division of the city based on climate parameters and
understand which variables work better for the task. Initially, we performed the
analysis on the dataset with the highest spatial resolution, and after selecting
the best features we used them on the three different granularities of the city.
The value of the attributes assigned to each geometry corresponds to the mean
of the data points inside its area. The partitions of ACE, NIL, and Block will
be compared later with the ones created with urban attributes.

6.1.1 100m resolution

As previously said these datasets are composed of 17877 data points and a lot of
features; these dimensions limit the possibilities of the plugin. For this reason,
the clustering algorithm in the following experiments is K-Means and for feature
selection the sampling version of entropy. Moreover, the elbow method is not
applicable, and the number of clusters is selected based on what we considered
appropriate for the type of analysis, which is between 2 and 10.

The first experiments are on the annually aggregated dataset, both using all
the features and the ones selected automatically. Entropy algorithm selected
from every year only the attributes relative to:

• mean temperature

• mean relative humidity

• max wind speed

and performed significantly better, as we will show in section 7.1.
After this, we repeated both experiments on single years, specifically the two

most recent, 2016 and 2017. The results confirmed the performance increase
with only the automatically selected feature and the selection of the same three
variables in 2017 and only the first two in 2016.

The second and third datasets analysed are the monthly aggregated ones for
2016 and 2017. The features selected are reported in table 6.1. The trends of the
internal metrics with feature selection are consistent with the yearly aggregated
data.

Finally, we analysed monthly data for both 2016 and 2017 using single vari-
ables. The results confirmed our expectations since there was a wide gap between
the indices of mean temperature and humidity and their mean counterparts.
The wind speed values had more moderate differences between the two, but the
max attribute turned out to be preferable.

54

Variable 2016 months selected 2017 months selected
Max temperature 0 0
Mean temperature 12 12

Max relative humidity 0 0
Mean relative humidity 12 12

Max wind speed 11 12
Mean wind speed 5 9

Table 6.1: Monthly Variables from automatic selection for 2016 and 2017

For the next experiments on different granularities, we decided to use data
from the three best features, aggregated monthly to avoid suppressing differences
that could be caused by averaging over the entire year. Overall, the 2016 and 2017
data did not present clear differences from the point of view of the performance
and the groups created, so we selected the most recent year.

6.1.2 ACE climate

This dataset is considerably smaller than the previous ones, this means that we
can also use hierarchical clustering as well as the dendrogram and the elbow
method. The dendrogram and the WSS-BSS trends for hierarchical clustering
are shown in figure 6.1 and 6.2. With the information from the two graphs, we
decide to analyse 2, 3, and 5 clusters.

Figure 6.1: ACE climate data dendrogram

55

Figure 6.2: ACE climate data BSS and WSS trends for hierarchical clustering

The graph from K-Means, shown in figure 6.3, does not provide a clear choice,
so we run the algorithm with the number of clusters set from 2 to 7.

56

Figure 6.3: ACE climate data BSS and WSS trends for K-Means clustering

6.1.3 NIL climate

From the dendrogram in figure 6.4 and the steps in the trend from figure 6.5, we
set the number of clusters for hierarchical clustering to 2, 3, and 6.

As before, in figure 6.6 K-Means presents a graph without steep changes,
and we decide to cluster with 3 to 6 groups.

57

Figure 6.4: NIL climate data dendrogram

Figure 6.5: NIL climate data BSS and WSS trends for hierarchical clustering

58

Figure 6.6: NIL climate data BSS and WSS trends for K-Means clustering

59

6.1.4 Block climate

As said before, one of the focuses on the analysis of the climate partitions on NIL,
ACE and Block geometries is to make a comparison with the urban analysis. At
the Block granularity, hierarchical clustering had the tendency to find few outliers
and put the rest of the points in a big cluster, as shown in the dendrogram in
figure 6.7. Since these outliers are mostly meaningless for our purpose, we only
used K-Means.

Figure 6.7: Block climate data dendrogram

Once again, the K-Means graph in figure 6.8 doesn’t show a clear indication
of the best number of clusters, and we select 3 to 7.

60

Figure 6.8: Block climate data BSS and WSS trends for K-Means clustering

6.2 Urban experiments

The experiments on the Urban dataset are done on a set of automatically
selected features and the obtained partitions will be compared to the ones from
the experiments on climate data. Other than understanding the similarities
between the zones of the city based on their urban characteristic, the purpose of
this analysis is to understand the influence of the parameters on climatic variables.
The set of features is selected by removing the highly correlated features and the
quasi constant ones, and then using entropy on the remaining features. Before
dropping any attributes, we removed from the datasets the information about
the size of the geometries (Area and Perimeter), as they are not of any interest
in this type of analysis. For ACE and NIL, the entropy algorithm is performed
on the entire dataset, while for Block the random sampling version is used due to
its size. As for the previous experiments, we used both hierarchical and K-Means
for ACE and NIL and only K-Means for Block.

6.2.1 ACE urban

The process of cleaning and feature selection for this dataset selected 8 features.
The dendrogram from figure 6.9 and the graph in figure 6.10 suggest 2, 4 and 6
clusters. With 2 clusters there is a group of only 2 points corresponding to the
city centre, and in this data we are not interested in small clusters of outliers.
For this reason, we take 3 clusters instead, which also simplifies the comparison
with the climate partition.

61

Figure 6.9: ACE urban data dendrogram

Figure 6.10: ACE urban data BSS and WSS trends for hierarchical clustering

62

K-Means, as usual, provided a graph with no clear indication. The decision
is to take 7 clusters, since the curve in figure 6.11 starts to flatten more at that
point.

Figure 6.11: ACE urban data BSS and WSS trends for K-Means clustering

6.2.2 NIL urban

In this dataset, after the full selection, the features remained are 12 out of the
initial 107. From figure 6.12 we can see that hierarchical clustering formed mostly
small clusters. To find a larger division we have to select 6 clusters, which is
also a coherent choice with the trends from figure 6.13.

63

Figure 6.12: NIL urban data dendrogram

Figure 6.13: NIL urban data BSS and WSS trends for hierarchical clustering

64

K-Means is used again with a number of clusters set to 7, the WSS-BSS is
shown in figure 6.14.

Figure 6.14: NIL urban data BSS and WSS trends for K-Means clustering

6.2.3 Block urban

For this dataset, the automatic procedure kept 19 features, more than in the
other cases. In figure 6.15 the WSS-BSS trends show steps at 4 and 6-7 cluster,
and these are the numbers that we used.

65

Figure 6.15: Block urban data BSS and WSS trends for K-Means clustering

6.3 Building experiments

For the analysis on the Building dataset, we decided to take a different approach
and try experiments on both automatically selected features and on a set of
manually selected ones. For the automatic selection we removed at first the
correlated and quasi constant features, and after performed entropy with sampling
on the remaining ones. At the end of the process, the system selected 6 features.
The experts, instead, selected a set of 10 features. Unlike in the previous types
of data, for the buildings it is possible to have some information on the classes
that can be created. For this reason, the number of clusters created is not based
on data but on human knowledge. The numbers selected are 4, 6, 10, and 12.
The comparison between the two methods, as shown in section 7.3, is done with
the use of internal indexes, score and by manually looking at the classes to
understand how they are created and if they have real meaning.

6.4 Demographic and social experiments

In section 4.3 we said that some of the demographics and social indicators are
calculated on specific classes. For this reason, we decided to perform clustering
on sets of features manually selected to analyse some of the classes individually.
Since in this analysis we are particularly interested in finding zones of the city
that can be considered outliers, we used hierarchical as it is more suited for the
task than K-Means.

66

6.4.1 Young people education and occupation

The first set of features is relative to young people and their education and
unemployment, i.e.:

• mean age;

• young people (15-19) without middle school diploma;

• young people (15-24) without high school graduation;

• young people (15-29) neither in employment nor education.

The numbers of clusters selected, supported by the graphs in figure 6.16 and
6.17, are 2, 4, 5, and 7.

Figure 6.16: Young people data dendrogram

67

Figure 6.17: Young people data BSS and WSS trends for hierarchical clustering

6.4.2 Housing overcrowding

In this group we included data about population distribution and the composition
of the families, i.e.:

• average house size;

• population density;

• average family components;

• families with 5 or more components.

The numbers of clusters selected are 2, 3, and 4 by looking at the dendrogram
in figure 6.18 and 7, where the trends of WSS-BSS in figure 6.19 is flattening.
Another possible value suggested by the graph, would be 9 clusters, but in this
case we were not interested in dividing the city into so many areas.

68

Figure 6.18: Families data dendrogram

Figure 6.19: Families data BSS and WSS trends for hierarchical clustering

69

6.4.3 Population isolation

In the last set of features we included mainly attributes about people living
alone of various ages, i.e.:

• people over 65 years old living alone;

• young people (15-34) living alone;

• families composed by only one person;

• average family components.

In this experiment, the clusters selected are 2, 3, and 7; in figure 6.20 and 6.21
we can see the dendrogram and the graph.

Figure 6.20: Alone people data dendrogram

70

Figure 6.21: Alone people data BSS and WSS trends for hierarchical clustering

71

Chapter 7

Experiments evaluation

In this chapter, we will analyse the results of the experiments described in chapter
6. As we said previously the method of evaluation will vary based on the analysis
characteristic. Since we performed a great number of different experiments, we
will try to summarize the results and highlight some important points. With the
help of an expert, we also try to understand some of the maps that were created
from the experiments. Since the plugin does not provide information about the
cluster distance, the colours used for the maps don’t follow any precise criterion
but are selected for better visualisation.

7.1 Climate results

In this section, we show the results of the climate experiments on the four gran-
ularities. First, we talk about the yearly and monthly data and the performance
comparisons of experiments without and with entropy feature selection. After
this, we will see the behaviour of the selected climate variables on the other
divisions of the city.

7.1.1 100m resolution

The experiments and results reported are only for numbers of clusters between 2
and 5, since between 6 and 10 the performance decreased rapidly, and the maps
were similar with few small differences. In table 7.1, 7.2, and 7.3 we can see the
internal metrics and how the entropy feature selection improved the performance
of clustering for the three cases: 2008-2017, 2016, and 2017 yearly aggregated
data. In table 7.4, instead, we can see the trends of the metrics for the data
from 2017 monthly aggregated.

73

N clusters
All features Feature selection

Silhouette Davies-Bouldin Silhouette Davies-Bouldin
2 0.5423 0.7678 0.6632 0.4974
3 0.3646 1.1382 0.5117 0.7752
4 0.3622 1.0661 0.4328 0.8564
5 0.3639 0.9297 0.4339 0.8367

Table 7.1: Internal metrics for experiments on yearly data from 2008-2017

N clusters
All features Feature selection

Silhouette Davies-Bouldin Silhouette Davies-Bouldin
2 0.5268 0.8691 0.71856 0.4109
3 0.5102 0.9150 0.6000 0.5283
4 0.3891 1.0761 0.5706 0.5514
5 0.3340 1.1200 0.5334 0.6042

Table 7.2: Internal metrics for experiments on yearly data from 2016

N clusters
All features Feature selection

Silhouette Davies-Bouldin Silhouette Davies-Bouldin
2 0.5786 0.6505 0.6761 0.4775
3 0.4256 0.9895 0.5231 0.7529
4 0.3764 1.0212 0.4382 0.8372
5 0.3354 1.0857 0.4378 0.8172

Table 7.3: Internal metrics for experiments on yearly data from 2017

N clusters
All features Feature selection

Silhouette Davies-Bouldin Silhouette Davies-Bouldin
2 0.5537 0.6952 0.6415 0.5559
3 0.3708 1.1011 0.5289 0.7700
4 0.3290 1.1602 0.4072 0.8896
5 0.2895 1.2507 0.4072 0.8908

Table 7.4: Internal metrics for experiments on monthly data from 2017

74

For the single variables, we only performed experiments with 3 clusters, and
in table 7.5 we can see the internal metrics of each one.

Variable Silhouette Davies-Bouldin
Max temperature 0.2878 1.2166
Mean temperature 0.5699 0.5733

Max relative humidity 0.4059 0.9070
Mean relative humidity 0.5782 0.5843

Max wind speed 0.5851 0.5299
Mean wind speed 0.5644 0.5624

Table 7.5: Internal metrics for experiments on monthly single climate variables
from 2017

The indexes convinced us to use for the other climate experiments only the
features that performed better and were selected by the automatic processes.
While the choice was clear between max and mean for temperature and humidity,
for wind speed we had to also look at the maps. The final choice was max wind
speed as it better captured the morphology of the city and identified better
solids and voids. Moreover, the mean wind speed is less meaningful since Milan
is not a windy city.

In figure 7.1 we show one of the maps created with 2017 monthly aggregated
data, using the three selected features and 5 clusters. Compared with the map
of Milan, the analysis correctly captured the morphology of the city, separating
the big rural areas in the outskirts, the urban part of the centre and the less
built areas. Furthermore, the tool also identified more subtle differences in the
central area, such as the voids of the railway yards and the green areas inside the
city, both large and small. In image 7.2 there is a raster map [48] of Milan that
shows the Local Climate Zones [49] of the city, which is a classification of the
areas based mainly of surface structure, surface cover, and human activities.

75

Figure 7.1: Map of monthly climate data from 2017 with 5 clusters

Figure 7.2: Local Climate Zones Milan

76

7.1.2 ACE climate

On the ACE dataset, hierarchical clustering separated the urban area of the city
centre and created some clusters in the suburban areas with 3 and 5 clusters.
With 2 clusters, most of the areas are in the same group and the few mostly
green areas in a separate one. The same also applies to K-Means up to 5 clusters,
while for 6 and 7 clusters it also found a partition in the centre. From the
experiments, we can state that this granularity is not suited to create climate
partitions. One of the reasons is probably that this dataset is missing the rural
and peripheral areas where we can find a different climate. The other is that the
urban parks are merged with urban blocks in the same polygon, and when the
mean is computed for the entire area, the differences are suppressed. In images
7.3 and 7.4 we show some of the maps for hierarchical and K-Means.

Figure 7.3: Hierarchical clustering on ACE climate data with 2 and 5 clusters

77

Figure 7.4: K-Means clustering on ACE climate data with 6 clusters

7.1.3 NIL climate

As before, most of the city centre is in the same cluster in both hierarchical
and K-Means at different number of clusters, but the urban parks have been
recognized and grouped with other green zones. We can also see that the big
agricultural parks in the south and the west are always together in their own
cluster. In image 7.5 we show a map for the two different clustering algorithms,
one with hierarchical at 3 clusters and the other with K-Means at 5.

Figure 7.5: Hierarchical and K-Means clustering on NIL climate data with 3 and
5 clusters

78

7.1.4 Block climate

For the blocks, the clustering behaved similarly to the 100m resolution; this is
expected given the finer granularity of the geometries. In image 7.6, the 3 clusters
show that the analysis identified three zones with different climatic attributes
composed as: mostly green areas inside and outside the city, areas with sparse
buildings and some small green sections, areas covered almost exclusively by
buildings.

Figure 7.6: K-Means clustering on Block climate data with 3 clusters

79

7.2 Urban results

For these experiments, we will report the internal metrics and the score compared
with the correspondent climate experiments for each dataset.

7.2.1 ACE urban

In table 7.6, we can see how the internal metrics are low for both hierarchical
and K-Means clustering. For what concern the comparison with the climate
experiments, in table 7.7 we see that the clustering is not similar, except for
K-Means with 7 clusters.

N clusters Algorithm Silhouette Davies-Bouldin
3 Hierarchical 0.2237 1.4566
4 Hierarchical 0.2988 1.2396
6 Hierarchical 0.2009 1.3576
7 K-Means 0.2176 1.1589

Table 7.6: Internal metrics for experiments on ACE urban data

N clusters Algorithm Score
3 Hierarchical 0.4577
4 Hierarchical 0.4705
6 Hierarchical 0.5707
7 K-Means 0.7580

Table 7.7: Score comparison between ACE climate and urban experiments

7.2.2 NIL urban

From table 7.8 we can see how K-Means provided clusters considerably more
separated. As in the previous case, the urban data created different partitions
compared to climate data, as displayed in the score values of table 7.9. Analysing
the maps of these experiments, we noted some behaviours that are not desirable,
such as divisions between the similar agricultural parks and the grouping of
urban parks with heavily built areas.

N clusters Algorithm Silhouette Davies-Bouldin
6 Hierarchical 0.2361 1.0520
7 K-Means 0.3880 1.0003

Table 7.8: Internal metrics for experiments on NIL urban data

80

N clusters Algorithm Score
6 Hierarchical 0.5749
7 K-Means 0.4822

Table 7.9: Score comparison between NIL climate and urban experiments

7.2.3 Block urban

Despite having better performance in terms of metrics, which are shown in
table 7.10, the clusters provided by these experiments did not provide any good
information from an urbanistic point of view. One big cluster contained most of
the data points, even ones that have completely different conformation, while
almost identical blocks were separated in different small clusters. The score
comparison with the climate experiments is not reported, since it presented
similar values to the other two datasets.

N clusters Algorithm Silhouette Davies-Bouldin
4 K-Means 0.4185 1.2144
7 K-Means 0.3649 1.1854

Table 7.10: Internal metrics for experiments on NIL urban data

7.2.4 Comments on urban results

Overall, these urban features seemed less suited to form useful clusters in the
three datasets compared with the climatic data, at least with an automatic
feature selection. The reason for this could be that the datasets contained a
large number of features of different types, from the urbanistic perspective. This
problem can be mitigated by splitting manually the features in different groups
and repeating the experiments on each of them. In the current version, the plugin
does not provide functionalities to support the users in the manual selection. In
the next chapter, we talk about the implementations that could be helpful for
these situations.

7.3 Buildings results

As we said in the previous chapter, the buildings’ data have clearer classifications
compared to the other datasets. For this reason, the evaluation of the results is
also done manually by exploring the map and understanding the formed clusters.
A good way to objectively evaluate these experiments would be to define a
gold standard for the entire dataset or a portion of it and compare it with the
obtained labels.

81

7.3.1 Automatic features

In the automatic set, the experiment at 4 clusters did not provide a good
classification. This is caused by some outliers, which are really big buildings,
that are grouped together in a single cluster. Due to this, the other three clusters
are not enough to identify all the different types of buildings. For the 6, 10 and
12 experiments, instead, we were satisfied with the results. In table 7.11 we can
see the internal metrics of all 4 groupings.

N clusters Algorithm Silhouette Davies-Bouldin
4 K-Means 0.5705 0.9722
6 K-Means 0.4575 1.0477
10 K-Means 0.3813 1.0291
12 K-Means 0.3788 0.9341

Table 7.11: Internal metrics for experiments on buildings’ data and automatically
selected features

7.3.2 Manual features

The manual features provided a good classification with 4 clusters as well, since
it didn’t use an entire cluster for the outliers but grouped them in a class of large
buildings. The other three experiments performed similarly to the automatic set,
and most of the buildings grouped differently don’t belong to a clear class but
can fit in different ones. The internal metrics, shown in table 7.12, have overall
worse performance, but this is expected since the features are not selected using
objective parameters. In image 7.7 there is a small part of the dataset grouped
in 6 clusters.

N clusters Algorithm Silhouette Davies-Bouldin
4 K-Means 0.3221 1.2236
6 K-Means 0.3317 1.0516
10 K-Means 0.2577 1.1003
12 K-Means 0.2653 1.1049

Table 7.12: Internal metrics for experiments on buildings’ data and manually
selected features

82

Figure 7.7: K-Means clustering on Building data and manually selected features
with 6 clusters

7.3.3 Comparison between manual and automatic

For a dataset with so many data points, the computation of the correlation
matrix exceeded the memory limits, requesting more than 35 GB of memory.
To compare the two set of features we had to split the labels into 9 parts and
compute the score on each of them. This operation resulted too time consuming,
and the plugin was inadequate for the task. In table 7.13 we see the score for
each part of the dataset and the average of all 9. As expected, the lowest score
is for 4 clusters, while the other three numbers provided similar values. In some
zones of the city, in particular the city centre (section 9), the score exceeded (or
is very close to) 70 percent.

N 1 2 3 4 5 6 7 8 9 Average
4 0.55 0.54 0.52 0.56 0.57 0.56 0.56 0.56 0.57 0.55
6 0.64 0.63 0.61 0.65 0.66 0.64 0.65 0.65 0.68 0.64
12 0.66 0.66 0.62 0.67 0.67 0.65 0.67 0.68 0.71 0.66
4 0.67 0.68 0.63 0.68 0.68 0.66 0.68 0.70 0.73 0.68

Table 7.13: Score comparison on building experiments between manual and
automatic feature selection

83

7.4 Demographics and social results

For these experiments, we don’t report internal metrics, but we focus on the
analysis of the maps, in particular the ones with a small number of clusters as
they are easier to read.

7.4.1 Young people education and occupation

In image 7.8 we can see the maps with 2 and 4 clusters. There is a clear
separation between the areas in the centre and in the outskirts. The areas
identified are among the frailest neighborhoods of the city and present social
criticalities, which is coherent with the attributes.

Figure 7.8: Hierarchical clustering on young people education on occupation
data with 2 and 4 clusters

7.4.2 Housing overcrowding results

In image 7.9, the first division in 2 clusters creates a ring between the centre
of the city and the outermost areas, that follows approximately the outer Ring
Road of the city. It is interesting to note how the centre is grouped with the
outskirts rather than the adjacent zones. At 4 clusters, the ring persists, and
2 smaller clusters split from the big one. The yellow one is mostly composed
of the city centre and other close areas, while the other is in the suburbs and
contains the neighbourhoods with very large families.

84

Figure 7.9: Hierarchical clustering on overcrowding with 2 and 4 clusters

7.4.3 Population isolation results

At 2 clusters, we find a group with almost all the outermost areas that is strongly
separated from the other cluster, as highlighted by the dendrogram in section
6.4.3. The areas in this group have the lowest percentages of alone people. In
image 7.10, instead, we identify in yellow the neighbourhoods with a higher
degree of isolation.

Figure 7.10: Hierarchical clustering on isolation with 2 and 3 clusters

85

Chapter 8

Conclusions and future work

The objective of this research was to expand the possibilities of using machine
learning – in particular clustering – on geospatial data within a GIS. To achieve
this, we implemented from scratch a new plugin that introduces functionalities
that were not available in the existing QGIS plugins, nor in other widespread
proprietary software such as ArcGIS. The new functionalities can be separated
into three different categories: pre-processing for dimensionality reduction, fea-
ture selection, and clustering evaluation. The first two categories are essential to
improve the performance of cluster analysis in high dimensional data, which is
often the case when dealing with geospatial data. The evaluation functionalities
are helpful for the user to obtain insight and information to understand the
quality and utility of the performed analysis. The large number of experiments
carried out in this work displayed the versatility of the plugin, which can be
used in multiple situations with data of different types and dimensions.

The analyses were not only useful to highlight the strengths of the developed
tool, but allowed us to identify its limitations. There is still work to do to
achieve a complete and flexible plugin for cluster analysis in QGIS. The future
developments can focus mainly on two categories:

• optimization of the software performances to enable the use of each func-
tionality on even bigger datasets;

• expansion and improvement of the analysis functionalities.

The main weakness of performance, at the moment, is the score computation, as
we saw in section 7.3. To allow comparison on bigger datasets, a viable solution
would be to split the comparison matrix and compute the score on smaller
sections, avoiding memory limitations. Other improvements would be to perform
the heavy computations in background and to implement multithreading for
independent but long computations, such as the matrixes used in entropy feature
selection.

The easiest, but very helpful, expansion of functionalities is the addition of the
other popular clustering algorithms and more options for the algorithms’ settings.

87

In the same section of the plugin, new algorithms for automatic feature selection
or feature reduction can be implemented; a good solution would be Principal
Component Analysis. For what concerns the existing feature selection, random
sampling is not always the best solution, since geospatial data is often spatially
autocorrelated [50]. For this reason, new methods of sampling for the entropy
algorithm are a good addition. As felt evident while reporting the experiments’
results, a missing functionality is the possibility to see the distances between
the cluster, which is essential to understand the clusters displayed on the maps.
Finally, future works can implement an entire new section dedicated to data
exploration, where it would be possible to display important information about
the data to the users. Some features to include in this section are: identification
and elimination of outliers in the data that can reduce the clustering quality,
computation of statistics about single or multiple features, visualization of the
high dimensional space in low dimension with the help of Self Organizing Maps
[51].

To allow the use and the implementation of new functionalities to the QGIS
community, the plugin will be published in the official repository in the near
future.

88

Bibliography

[1] M. Kanevski et al. “Machine learning models for geospatial data”. In: Jan.
2009, pp. 175–227. isbn: 978 -2 -9403-6808-2.

[2] E. Lenzi. “SIMBA: systematic clustering-based methodology to support
built environment analysis”. MA thesis. Politecnico di Milano, 2020.

[3] Politecnico di Milano. IMM Design Lab. http://www.immdesignlab.com/.

[4] QGIS Development Team. QGIS Geographic Information System. Open
Source Geospatial Foundation. 2021. url: http://qgis.org.

[5] Earth Observing System. Spatial Analysis: Data Processing And Use Cases.
2021. url: https://eos.com/blog/spatial-analysis/.

[6] N. Tohidi and R. B. Rustamov. “A Review of the Machine Learning in
GIS for Megacities Application”. In: Geographic Information Systems in
Geospatial Intelligence. Ed. by IntechOpen. Oct. 2020. doi: 10.5772/
intechopen.94033. url: https://www.intechopen.com/chapters/
73592.

[7] G. Rousset et al. “Assessment of Deep Learning Techniques for Land
Use Land Cover Classification in Southern New Caledonia”. In: Remote
Sensing 13.12 (2021). issn: 2072-4292. doi: 10.3390/rs13122257. url:
https://www.mdpi.com/2072-4292/13/12/2257.

[8] H. A. Kaul and S. Ingle. “Land Use Land Cover Classification and Change
Detection Using High Resolution Temporal Satellite Data”. In: The Journal
of Environment 1 (Nov. 2012), pp. 146–152.

[9] E. Aksoy. “Clustering With GIS: An Attempt to Classify Turkish District
Data”. In: (Jan. 2006).

[10] R. Singh. Where Deep Learning Meets GIS. https://www.esri.com/
about/newsroom/arcwatch/where-deep-learning-meets-gis/.

[11] Politecnico di Milano. IMM Design Lab. http://www.immdesignlab.com/
informazioni/.

[12] C. A. Biraghi. “Multi-Scale Modelling Approach for Urban Optimization:
Urban Compactness Environmental Implications”. PhD thesis. Politecnico
di Milano, 2019.

89

http://www.immdesignlab.com/
http://qgis.org
https://eos.com/blog/spatial-analysis/
https://doi.org/10.5772/intechopen.94033
https://doi.org/10.5772/intechopen.94033
https://www.intechopen.com/chapters/73592
https://www.intechopen.com/chapters/73592
https://doi.org/10.3390/rs13122257
https://www.mdpi.com/2072-4292/13/12/2257
https://www.esri.com/about/newsroom/arcwatch/where-deep-learning-meets-gis/
https://www.esri.com/about/newsroom/arcwatch/where-deep-learning-meets-gis/
http://www.immdesignlab.com/informazioni/
http://www.immdesignlab.com/informazioni/

[13] M. Tadi and S. V. Manesh. “Integrated modification methodology (imm):
A phasing process for sustainable urban design”. In: (2013).

[14] Environmental Systems Research Institute (ESRI). ArcGIS Pro, Multivari-
ate Clustering. Version 2.9. 2021. url: https://pro.arcgis.com/en/pro-
app/latest/tool- reference/spatial- statistics/multivariate-

clustering.htm#L_.

[15] E. Kazakov. Attribute based clustering. Version 2.2. 2021. url: https:
//plugins.qgis.org/plugins/attributeBasedClustering/.

[16] University of Wisconin-Madison. Mapping and Geographic Information
Systems (GIS) : What is GIS? url: https://researchguides.library.
wisc.edu/GIS.

[17] C. Dempsey. Types of GIS Data Explored: Vector and Raster. 2021. url:
https://www.gislounge.com/geodatabases-explored-vector-and-

raster-data/.

[18] Environmental Systems Research Institute (ESRI). Defining a spatial
reference. 2009. url: http://webhelp.esri.com/arcgiSDEsktop/9.3/
index.cfm?TopicName=Defining_a_spatial_reference.

[19] L. Wasser et al. datacarpentry/organization-geospatial: Data Carpentry
Introduction to Geospatial Concepts August 2018 Release. Aug. 2018. doi:
10.5281/zenodo.1404414.

[20] QGIS Development Team. Geographic Information System API Documen-
tation. QGIS Association. 2021. url: https://qgis.org/pyqgis/3.16/
index.html.

[21] Expert.ai Team. What is Machine Learning? A Definition. 2020. url:
https://www.expert.ai/blog/machine-learning-definition/.

[22] D. Gunopulos. “Cluster and Distance Measure”. In: Encyclopedia of
Database Systems. Ed. by L. LIU and M. T. ÖZSU. Boston, MA: Springer
US, 2009, pp. 374–375. isbn: 978-0-387-39940-9. doi: 10.1007/978-0-
387-39940-9_618. url: https://doi.org/10.1007/978-0-387-39940-
9_618.

[23] S. Thilagamani, A. Jayanthiladevi, and N. Arunkumar. “Data mining
algorithms, fog computing”. In: May 2018, pp. 231–264. doi: 10.4018/978-
1-5225-5972-6.ch012.

[24] S. Yang, D. Towey, and Z. Q. Zhou. “Metamorphic Exploration of an
Unsupervised Clustering Program”. In: May 2019, pp. 48–54. doi: 10.
1109/MET.2019.00015.

[25] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining,
(First Edition). USA: Addison-Wesley Longman Publishing Co., Inc., 2005.
Chap. Chapter 8: ”Cluster Analysis: Basic Concepts and Algorithms”.
isbn: 0321321367.

90

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/multivariate-clustering.htm#L_
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/multivariate-clustering.htm#L_
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/multivariate-clustering.htm#L_
https://plugins.qgis.org/plugins/attributeBasedClustering/
https://plugins.qgis.org/plugins/attributeBasedClustering/
https://researchguides.library.wisc.edu/GIS
https://researchguides.library.wisc.edu/GIS
https://www.gislounge.com/geodatabases-explored-vector-and-raster-data/
https://www.gislounge.com/geodatabases-explored-vector-and-raster-data/
http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=Defining_a_spatial_reference
http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=Defining_a_spatial_reference
https://doi.org/10.5281/zenodo.1404414
https://qgis.org/pyqgis/3.16/index.html
https://qgis.org/pyqgis/3.16/index.html
https://www.expert.ai/blog/machine-learning-definition/
https://doi.org/10.1007/978-0-387-39940-9_618
https://doi.org/10.1007/978-0-387-39940-9_618
https://doi.org/10.1007/978-0-387-39940-9_618
https://doi.org/10.1007/978-0-387-39940-9_618
https://doi.org/10.4018/978-1-5225-5972-6.ch012
https://doi.org/10.4018/978-1-5225-5972-6.ch012
https://doi.org/10.1109/MET.2019.00015
https://doi.org/10.1109/MET.2019.00015

[26] M. Pathak. Quick Guide to Evaluation Metrics for Supervised and Unsu-
pervised Machine Learning. 2020. url: https://www.analyticsvidhya.
com / blog / 2020 / 10 / quick - guide - to - evaluation - metrics - for -

supervised-and-unsupervised-machine-learning/.

[27] R. Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–
37.

[28] N. Venkat. “The Curse of Dimensionality: Inside Out”. In: (Sept. 2018).
doi: 10.13140/RG.2.2.29631.36006.

[29] A. Gupta. Feature Selection Techniques in Machine Learning. 2020. url:
https://www.analyticsvidhya.com/blog/2020/10/feature-selection-

techniques-in-machine-learning/.

[30] J. G. Dy and C. E. Brodley. “Feature Selection for Unsupervised Learning”.
In: Journal of Machine Learning Research (2000).

[31] M. Dash and H. Liu. “Feature Selection for Clustering”. In: (2000).

[32] M. Steinbach, L. Ertöz, and V. Kumar. “The Challenges of Clustering High
Dimensional Data”. In: New Directions in Statistical Physics: Econophysics,
Bioinformatics, and Pattern Recognition. Ed. by L. T. Wille. Springer
Berlin Heidelberg, 2004, pp. 273–309. isbn: 978-3-662-08968-2. doi: 10.
1007/978-3-662-08968-2_16. url: https://doi.org/10.1007/978-3-
662-08968-2_16.

[33] K. Beyer et al. “When Is “Nearest Neighbor” Meaningful?” In: Database
Theory — ICDT’99. Ed. by C. Beeri and P. Buneman. Springer Berlin
Heidelberg, 1999, pp. 217–235.

[34] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. “On the Surprising
Behavior of Distance Metrics in High Dimensional Space”. In: Database
Theory — ICDT 2001. Ed. by J. Van den Bussche and V. Vianu. Springer
Berlin Heidelberg, 2001, pp. 420–434. isbn: 978-3-540-44503-6.

[35] Copernicus Climate Change Service (C3S). 2019. url: https://cds.
climate.copernicus.eu/cdsapp#!/dataset/sis- urban- climate-

cities?tab=overview.

[36] S. Gelmi and M. Magnani. Database Topografico - Specifiche di contenuto
semplificate. 2021. url: https://www.geoportale.regione.lombardia.
it/documents/10180/0/Allegato+2_III_Specifiche/19458997-44c0-

4d54-b07d-d26ae5d4c6d8.

[37] Comune di Milano. 2011. url: https://dati.comune.milano.it/
dataset/ds95_infogeo_aree_censimento_localizzazione_2011c.

[38] GeoApt LLC. Plugin Builder. Version 2.18.0. 2018. url: https://plugins.
qgis.org/plugins/pluginbuilder/.

[39] Qt Project. Qt Designer. Version 5.11.2. 2018. url: https://doc.qt.io/
qt-5/qtdesigner-manual.html.

91

https://www.analyticsvidhya.com/blog/2020/10/quick-guide-to-evaluation-metrics-for-supervised-and-unsupervised-machine-learning/
https://www.analyticsvidhya.com/blog/2020/10/quick-guide-to-evaluation-metrics-for-supervised-and-unsupervised-machine-learning/
https://www.analyticsvidhya.com/blog/2020/10/quick-guide-to-evaluation-metrics-for-supervised-and-unsupervised-machine-learning/
https://doi.org/10.13140/RG.2.2.29631.36006
https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-learning/
https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-learning/
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-662-08968-2_16
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-urban-climate-cities?tab=overview
https://www.geoportale.regione.lombardia.it/documents/10180/0/Allegato+2_III_Specifiche/19458997-44c0-4d54-b07d-d26ae5d4c6d8
https://www.geoportale.regione.lombardia.it/documents/10180/0/Allegato+2_III_Specifiche/19458997-44c0-4d54-b07d-d26ae5d4c6d8
https://www.geoportale.regione.lombardia.it/documents/10180/0/Allegato+2_III_Specifiche/19458997-44c0-4d54-b07d-d26ae5d4c6d8
https://dati.comune.milano.it/dataset/ds95_infogeo_aree_censimento_localizzazione_2011c
https://dati.comune.milano.it/dataset/ds95_infogeo_aree_censimento_localizzazione_2011c
https://plugins.qgis.org/plugins/pluginbuilder/
https://plugins.qgis.org/plugins/pluginbuilder/
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html

[40] The pandas development team. pandas-dev/pandas: Pandas. Version 1.1.15.
2021. doi: 10.5281/zenodo.3509134. url: https://doi.org/10.5281/
zenodo.3509134.

[41] W. McKinney. “Data Structures for Statistical Computing in Python”. In:
Proceedings of the 9th Python in Science Conference. Ed. by S. van der Walt
and J. Millman. 2010, pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

[42] C. R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586- 020- 2649- 2. url:
https://doi.org/10.1038/s41586-020-2649-2.

[43] L. Buitinck et al. “API design for machine learning software: experiences
from the scikit-learn project”. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. 2013, pp. 108–122.

[44] M. Kuhn. “Building Predictive Models in R Using the caret Package”.
In: Journal of Statistical Software, Articles 28.5 (2008), pp. 1–26. issn:
1548-7660. doi: 10.18637/jss.v028.i05. url: https://www.jstatsoft.
org/v028/i05.

[45] U. Fayyad, C. Reina, and P. S. Bradley. “Initialization of Iterative Re-
finement Clustering Algorithms”. In: 9th International Conference on
Knowledge Discovery & Data Mining (KDD ’98). 1998, pp. 194–198.

[46] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[47] P. Bhatia. Data Mining and Data Warehousing: Principles and Practical
Techniques. Cambridge University Press, 2019. doi: 10.1017/9781108635592.

[48] M. Demuzere et al. “Mapping Europe into local climate zones”. In: PLOS
ONE 14.4 (Apr. 2019), pp. 1–27. doi: 10.1371/journal.pone.0214474.
url: https://doi.org/10.1371/journal.pone.0214474.

[49] I. Stewart and T. Oke. “Local Climate Zones for Urban Temperature
Studies”. In: Bulletin of the American Meteorological Society 93 (Dec.
2012), pp. 1879–1900. doi: 10.1175/BAMS-D-11-00019.1.

[50] A. D. Cliff and K. Ord. “Spatial Autocorrelation: A Review of Existing
and New Measures with Applications”. In: Economic Geography 46 (1970),
pp. 269–292. issn: 00130095, 19448287. url: http://www.jstor.org/
stable/143144.

[51] T. Kohonen and M. Schroeder. Self-Organizing Maps. Jan. 2001. isbn:
3540679219.

92

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.18637/jss.v028.i05
https://www.jstatsoft.org/v028/i05
https://www.jstatsoft.org/v028/i05
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1017/9781108635592
https://doi.org/10.1371/journal.pone.0214474
https://doi.org/10.1371/journal.pone.0214474
https://doi.org/10.1175/BAMS-D-11-00019.1
http://www.jstor.org/stable/143144
http://www.jstor.org/stable/143144

Appendices

93

Appendix A

Cluster Analysis User Guide

Cluster Analysis is a QGIS 3 plugin to perform clustering based on numer-
ical values on vector layers with any geometry type. The algorithms cur-
rently available are Agglomerative Hierarchical and K-Means from the library
scikit-learn. Besides, the plugin provides functionalities for dimensionality
reduction (highly correlated features, constant and quasi constant features),
feature selection, data scaling, and clustering evaluation. For additional in-
formation, refer to the brief guide in each section of the UI, and to the file
”Plugin implementation” (in particular Chapter 5) in the plugin repository
(https://github.com/folini96/Cluster-Analysis-plugin/tree/main) for
a detailed description of each functionality.

Installation

The plugin is not officially published in the QGIS folder yet, for this reason the
installation must be performed manually.

Install dependencies

Install the librarires not available in QGIS or OSGeo4w Python (scipy, pandas,
scikit-learn). To install the libraries on Windows follow this steps in the same
order:

Open OSGeo4w Shell installed with QGIS as Administrator and type:

$ py3 env

$ python -m pip install scipy

$ python -m pip install pandas

$ python -m pip install scikit-learn

In Linux or Mac OS X, QGIS uses the standard Python installation (independent

95

https://github.com/folini96/Cluster-Analysis-plugin/tree/main

of QGIS), so you can install the missing libraries using the Terminal (https:
//packaging.python.org/tutorials/installing-packages/).

Add the plugin to QGIS

To manually install the plugin in QGIS you can perform the following steps:

– Download the entire plugin repository from:
https://github.com/folini96/Cluster-Analysis-plugin/tree/main

– Open QGIS 3 and go to Settings → User Profiles → Open Active User Folder

– In the User Folder go to python → plugins

– Add the plugin to this folder

– Reopen QGIS 3, and go to Plugins → Manage and Install Plugins, and make
sure that Cluster Analysis is checked in the Installed tab

A new icon for Cluster Analysis will be added to the Plugins menu and on the
QGIS main panel.

Save and load experiments

In the Results section of the plugin, it is possible to save the experiments of the
current session in a text file, and to load older ones. The saved files are stored in
the Experiments folder inside the plugin folder. To access the plugin folder from
QGIS go to Settings → User Profiles → Open Active User Folder → python →
plugins. The load function opens by default the Experiments folder, but it is
possible to open files stored in other locations. It is not recommended to modify
a file and load it in the plugin.

Configuration file

In the plugin folder you can find a json file called Configuration. From this file it
is possible to modify some settings of the algorithms in the plugin. To effectively
change the settings, after updating the file you have to reload the plugin either
with Plugin Reloader or by restarting QGIS. The parameters are:

– frequency cut : the threshold for the ratio of the most common value to the
second most common value, used in the quasi-constant feature elimination.
Requires a numerical value greater than 0;

– unique cut : the threshold for the ratio of distinct values to the number of total
samples, used in the quasi-constant feature elimination. Requires a percentage
value expressed as a number between 0 and 1;

96

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://github.com/folini96/Cluster-Analysis-plugin/tree/main

– entropy iterations: the number of random samples used for the sampling
entropy algorithm. Requires a positive integer, it is suggested to use a number
greater than 35. The execution of sampling entropy takes longer as this number
grows;

– sample size: the number of points in every random sample for the sampling
entropy algorithm; Requires a positive integer, the quality of the selection gets
lower the smaller the sample size is, while the execution takes longer as this
number grows;

– graph max cluster : the max number of clusters used when plotting WSS and
BSS trends. Requires a positive integer;

– distance: distance measure used in hierarchical clustering, the accepted values
are ‘euclidean’ or ‘manhattan’.

97

	Acknowledgements
	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	State of the art and goals
	Analysis of geospatial data
	IMM and SIMBA
	IMM
	SIMBA methodology

	Clustering tools in ArcGIS and QGIS
	ArcGIS tools
	QGIS tools

	Motivation and goals

	Theoretical background
	Geographical Information System
	GIS data
	QGIS plugins

	Machine learning
	Clustering algorithms
	Agglomerative hierarchical clustering
	K-Means
	K-Means vs Agglomerative hierarchical

	Additional machine learning concepts
	Distance measure
	Data scaling
	Clustering evaluation
	Number of clusters

	Feature selection
	Feature selection for clustering
	Clustering in high dimensionality

	Datasets description
	Climate data
	Urban data
	Demographic and social data
	Building data

	Plugin implementation
	Implementation overview
	Feature cleaning implementation
	Highly correlated features
	Constant features
	Quasi constant features
	Creation of new layer

	Clustering implementation
	Feature selection
	Clustering algorithms
	Graphs

	Evaluation implementation
	Indexes and score
	Load and save experiments

	Configuration file
	User Interface

	Experiments
	Climate experiments
	100m resolution
	ACE climate
	NIL climate
	Block climate

	Urban experiments
	ACE urban
	NIL urban
	Block urban

	Building experiments
	Demographic and social experiments
	Young people education and occupation
	Housing overcrowding
	Population isolation

	Experiments evaluation
	Climate results
	100m resolution
	ACE climate
	NIL climate
	Block climate

	Urban results
	ACE urban
	NIL urban
	Block urban
	Comments on urban results

	Buildings results
	Automatic features
	Manual features
	Comparison between manual and automatic

	Demographics and social results
	Young people education and occupation
	Housing overcrowding results
	Population isolation results

	Conclusions and future work
	Bibliography
	Appendices
	Cluster Analysis User Guide

